-
Notifications
You must be signed in to change notification settings - Fork 263
/
exprtk_simple_example_23.cpp
136 lines (120 loc) · 6.75 KB
/
exprtk_simple_example_23.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
/*
**************************************************************
* C++ Mathematical Expression Toolkit Library *
* *
* Simple Example 23 *
* Author: Arash Partow (1999-2024) *
* URL: https://www.partow.net/programming/exprtk/index.html *
* *
* Copyright notice: *
* Free use of the Mathematical Expression Toolkit Library is *
* permitted under the guidelines and in accordance with the *
* most current version of the MIT License. *
* https://www.opensource.org/licenses/MIT *
* SPDX-License-Identifier: MIT *
* *
**************************************************************
*/
#include <cstdio>
#include <string>
#include "exprtk.hpp"
template <typename T>
void real_1d_discrete_fourier_transform()
{
typedef exprtk::symbol_table<T> symbol_table_t;
typedef exprtk::expression<T> expression_t;
typedef exprtk::parser<T> parser_t;
typedef exprtk::function_compositor<T> compositor_t;
typedef typename compositor_t::function function_t;
const T sampling_rate = 1024.0; // ~1KHz
const T N = 8 * sampling_rate; // 8 seconds worth of samples
std::vector<T> input (static_cast<std::size_t>(N),0.0);
std::vector<T> output(static_cast<std::size_t>(N),0.0);
exprtk::rtl::io::println<T> println;
symbol_table_t symbol_table;
symbol_table.add_vector ("input" , input );
symbol_table.add_vector ("output" , output );
symbol_table.add_function ("println" , println );
symbol_table.add_constant ("N" , N );
symbol_table.add_constant ("sampling_rate", sampling_rate);
symbol_table.add_pi();
compositor_t compositor(symbol_table);
compositor.load_vectors(true);
compositor.add(
function_t("dft_1d_real")
.var("N")
.expression
(
" for (var k := 0; k < N; k += 1) "
" { "
" var k_real := 0.0; "
" var k_imag := 0.0; "
" "
" for (var i := 0; i < N; i += 1) "
" { "
" var theta := 2pi * k * i / N; "
" k_real += input[i] * cos(theta); "
" k_imag -= input[i] * sin(theta); "
" }; "
" "
" output[k] := hypot(k_real,k_imag); "
" } "
));
const std::string dft_program =
" "
" /* "
" Generate an aggregate waveform comprised of three "
" sine waves of varying frequencies and amplitudes. "
" */ "
" var frequencies[3] := { 100.0, 200.0, 300.0 }; /* Hz */ "
" var amplitudes [3] := { 10.0, 20.0, 30.0 }; /* Power */ "
" "
" for (var i := 0; i < N; i += 1) "
" { "
" var time := i / sampling_rate; "
" "
" for (var j := 0; j < frequencies[]; j += 1) "
" { "
" var frequency := frequencies[j]; "
" var amplitude := amplitudes [j]; "
" var theta := 2 * pi * frequency * time; "
" "
" input[i] += amplitude * sin(theta); "
" } "
" }; "
" "
" dft_1d_real(input[]); "
" "
" var freq_bin_size := sampling_rate / N; "
" var max_bin := ceil(N / 2); "
" var max_noise_level := 1e-5; "
" "
" /* Normalise amplitudes */ "
" output /= max_bin; "
" "
" println('1D Real DFT Frequencies'); "
" "
" for (var k := 0; k < max_bin; k += 1) "
" { "
" if (output[k] > max_noise_level) "
" { "
" var freq_begin := k * freq_bin_size; "
" var freq_end := freq_begin + freq_bin_size; "
" "
" println('Index: ', k,' ', "
" 'Freq. range: [', freq_begin, 'Hz, ', freq_end, 'Hz) ', "
" 'Amplitude: ', output[k]); "
" } "
" } "
" ";
expression_t expression;
expression.register_symbol_table(symbol_table);
parser_t parser;
parser.compile(dft_program,expression);
expression.value();
}
int main()
{
real_1d_discrete_fourier_transform<double>();
return 0;
}