-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutils.py
43 lines (35 loc) · 1.29 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import numpy as np
import scipy.sparse as sp
import torch
from torch_geometric.data import Data
from torch_geometric.datasets import Planetoid
def one_hot_embedding(labels, num_classes):
y = torch.eye(num_classes)
return y[labels]
def encode_onehot(labels):
classes = set(labels)
classes_dict = {c: np.identity(len(classes))[i, :] for i, c in
enumerate(classes)}
labels_onehot = np.array(list(map(classes_dict.get, labels)),
dtype=np.int32)
return labels_onehot
def load_data(dataset):
data = dataset[0]
train_mask = torch.zeros(data.num_nodes).to(torch.bool)
val_mask = torch.zeros(data.num_nodes).to(torch.bool)
test_mask = torch.zeros(data.num_nodes).to(torch.bool)
for i in range(0, int(0.6 * data.num_nodes)):
train_mask[i] = True
for i in range(int(0.6 * data.num_nodes), int(0.8 * data.num_nodes)):
val_mask[i] = True
for i in range(int(0.8 * data.num_nodes), data.num_nodes):
test_mask[i] = True
data.train_mask = train_mask
data.val_mask = val_mask
data.test_mask = test_mask
return data
def accuracy(output, labels):
preds = output.max(1)[1].type_as(labels)
correct = preds.eq(labels).double()
correct = correct.sum()
return correct / len(labels)