-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathread_dataset.py
78 lines (57 loc) · 2.35 KB
/
read_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
from skimage.transform import resize
from skimage import io
from skimage import img_as_ubyte
import numpy as np
import matplotlib.pyplot as plt
import os
# save numpy array as csv file
from numpy import asarray
from numpy import savetxt
from numpy import save
from numpy import load
datadir1="Datasets/Testing_Dataset"
datadir="Datasets/Training_Dataset"
training_data=[]
testing_data=[]
categories=['Corn_(maize)___Cercospora_leaf_spot Gray_leaf_spot','Corn_(maize)___Common_rust_','Corn_(maize)___healthy','Peach___Bacterial_spot','Peach___healthy']
def create_training_data():
for category in categories:
path=os.path.join(datadir,category)
class_num=categories.index(category)
for img in os.listdir(path):
# img_array=cv2.imread(os.path.join(path,img))
# img_array = cv2.cvtColor(img_array, cv2.COLOR_BGR2RGB)
# new_array=cv2.resize(img_array,(28,28))
img_array = io.imread(os.path.join(path,img))
img_array = img_array[:, :, ::-1]
new_array = resize(img_array,(28,28))
new_array = img_as_ubyte(new_array)
training_data.append([new_array,class_num])
def create_testing_data():
for category in categories:
path=os.path.join(datadir1,category)
class_num=categories.index(category)
for img in os.listdir(path):
#opencv code
# img_array=cv2.imread(os.path.join(path,img))
# img_array = cv2.cvtColor(img_array, cv2.COLOR_BGR2RGB)
# new_array=cv2.resize(img_array,(28,28))
img_array = io.imread(os.path.join(path,img))
img_array = img_array[:, :, ::-1]
new_array = resize(img_array,(28,28))
new_array = img_as_ubyte(new_array)
testing_data.append([new_array,class_num])
# print(training_data[0][0][0])
#save data to npz
# create_training_data()
# create_testing_data()
# from numpy import savez_compressed
# train_data = asarray([training_data])
# savez_compressed('train_data.npz', train_data)
# test_data = asarray([testing_data])
# savez_compressed('test_data.npz', test_data)
#load data from npz
# dict_data = load('data.npz',allow_pickle=True)
# data = dict_data['arr_0']
# print(data[0])
#s