
Pause and Resume

WebAssembly with Bysyncify

Sep 9, 2019

Pausing and resuming code can be useful for various things, like implementing

coroutines, patterns like async/await, limiting how much CPU time untrusted code

gets, and so forth. If you are customizing a WebAssembly VM then you have various

ways to do this (direct jumps, longjmp, running in an interpreter, etc.). On the other

and, if you want to do this in “userspace”, that is, if you are running inside of a

standard wasm VM and you want to transform some wasm so that it can be paused

and resumed, then Bysyncify provides a way to do that. For example, you can use it to

pause and resume wasm that you run on the Web, like if you have some synchronous

code that you don’t want to rewrite to be asynchronous, but need it to be - then

Bysyncify can do that for you automatically!

Bysyncify is implemented as a Binaryen pass. It provides low-level support for

pausing and resuming wasm by instrumenting the code and providing special

functions that control unwinding and rewinding the call stack, preserving all the local

state while doing so. We’ll see examples below of how to do that - basically, you can

start with normal synchronous wasm code, run Bysyncify on it, and then easily control

unwinding and rewinding the call stack from either wasm or JS.

Hopefully WebAssembly will support coroutines natively in the future. Another

possibility here is to use threads (by blocking on another thread), but that can only

work in browsers that support threads, and only in a worker. Bysyncify is another

option in the meantime, which works everywhere but adds some amount of overhead.

We’ll look into performance in depth later on - in many cases that overhead is

surprisingly low!

Let’s start with three examples of how to use Bysyncify: in pure wasm, in JS plus

wasm, and in C using Emscripten.

Alon Zakai's Blog

About

Pause and Resume WebAssembly with Bysyncify http://127.0.0.1:4000/blog/wasm/2019/09/09/bysy...

1 of 19 7/5/19, 9:38 AM

Example: Pure wasm

To use Bysyncify in pure wasm, define imports to the bysyncify.* API. Bysyncify

will turn those into direct calls to the implementations as it adds them. That API lets

you control unwinding and rewinding the call stack:

bysyncify.start_unwind : Starts to unwind the call stack. Receives a

parameter to a data structure that will store the information about the call stack

and local state, see below.

bysyncify.stop_unwind : Stops unwinding the call stack. Must be called when

you reach the end of the stack you want to unwind.

bysyncify.start_rewind : Starts to rewind the call stack. Receives a

parameter to the data structure used earlier to unwind, and rewinds to that exact

position.

bysyncify.stop_rewind : Stops rewinding the call stack. Must be called when

you reach the top of the stack you want to rewind, that is, you finished returning to

the previous position.

Here’s a simple example:

;; input.wat

(module

(memory 1 1)

(import "spectest" "print" (func $print (param i32)))

(import "bysyncify" "start_unwind" (func $bysyncify_start_unwind (

(import "bysyncify" "stop_unwind" (func $bysyncify_stop_unwind))

(import "bysyncify" "start_rewind" (func $bysyncify_start_rewind (

(import "bysyncify" "stop_rewind" (func $bysyncify_stop_rewind))

(global $sleeping (mut i32) (i32.const 0))

(start $runtime)

(func $main

(call $print (i32.const 1))

(call $sleep)

(call $print (i32.const 3))

)

(func $sleep

(if

Pause and Resume WebAssembly with Bysyncify http://127.0.0.1:4000/blog/wasm/2019/09/09/bysy...

2 of 19 7/5/19, 9:38 AM

(i32.eqz (global.get $sleeping))

(block

;; Start to sleep.

(global.set $sleeping (i32.const 1))

(i32.store (i32.const 16) (i32.const 24))

(i32.store (i32.const 20) (i32.const 1024))

(call $bysyncify_start_unwind (i32.const 16))

)

(block

;; Resume after sleep.

(call $bysyncify_stop_rewind)

(global.set $sleeping (i32.const 0))

)

)

)

(func $runtime

;; Call main the first time, let the stack unwind.

(call $main)

(call $bysyncify_stop_unwind)

;; We could do anything we want around here while

;; the code is paused!

(call $print (i32.const 2))

;; Set the rewind in motion.

(call $bysyncify_start_rewind (i32.const 16))

(call $main)

)

)

This little example uses the spectest import for logging, which works in the official

wasm test suite, and so it should work in any interpreter compatible with that, like the

spec interpreter or Binaryen’s wasm-shell . Here is how you can build and run it:

$ wasm-opt input.wat --bysyncify -O --print > output.wat

$ wasm-shell output.wat

BUILDING MODULE [line: 1]

(i32.const 1)

(i32.const 2)

(i32.const 3)

Pause and Resume WebAssembly with Bysyncify http://127.0.0.1:4000/blog/wasm/2019/09/09/bysy...

3 of 19 7/5/19, 9:38 AM

First we process the file with wasm-opt , running the Bysyncify pass and also

optimizing (optimizing is very important here for size and speed; see details later). We

then print out the result in text form, since that’s what wasm-shell expects

(otherwise we could do -o output.wasm to get a binary). Then if we run it in the

shell we get some logging from that tool (BUILDING ..), and then the expected

three logged numbers: main prints 1 , then while it is sleeping we print 2 , and

then after we resume main continues and prints 3 .

Note how even though we call main twice (once to start it, once to continue after

sleeping), it only executes once (split into two parts), and therefore we only see 1

and 3 printed once. For comparison, if we ran the original uninstrumented

input.wat (after removing the bysyncify_* calls from it), then we’d get this:

(i32.const 1) (i32.const 3) (i32.const 2) (i32.const 1) (i32.const

3) When not instrumented main can’t be paused once it starts to run, and it prints

1 and 3 every such time, giving us no opportunity to print 2 in the middle.

It may be confusing that we need to call main twice. The first time is obvious; the

second is to start the rewinding of the call stack - we need the wasm VM to end up in

the exact spot it was before, and the wasm VM manages the call stack, so we have to

recreate the call stack by executing the same calls. So we start at the same place,

and then the instrumented code makes sure to follow the right code paths in each

function to unwind properly.

That also determines how sleep works, which is the function main calls to pause

itself. sleep will be called twice, exactly like main : once when we run the program

and we decide to sleep, and once when we finish rewinding the call stack up to where

it was before - which is inside sleep ! To handle such multiple calls a useful code

pattern is used here, to check whether we are sleeping or not. If we aren’t, that is the

first call and we start to unwind; if we are then that is the second call and we finish the

rewind, allowing normal execution to proceed.

An important detail here is the data structure that we pass a pointer to in

bysyncify_start_unwind and bysyncify_start_rewind . This plays a similar

role to the jmp_buf used with setjmp/longjmp, but it’s pretty simple even if you’re not

familiar with that: it’s basically a place to store information while we unwind and read it

back while we rewind so that we can return to the exact same location and state. The

i32 passed to those methods must refer to a region in linear memory containing

such a structure, which contains two fields that must be initialized before calling

Pause and Resume WebAssembly with Bysyncify http://127.0.0.1:4000/blog/wasm/2019/09/09/bysy...

4 of 19 7/5/19, 9:38 AM

bysyncify_start_unwind :

i32 at offset 0 : the index in linear memory of the start of the “bysyncify stack”,

a region of memory allocated for us.

i32 at offset 4 : the index of the end of that stack region. If the size of the stack

is too small, the bysyncify_* functions will execute a wasm unreachable

instruction (they check for a stack overflow). If you see such a trap happen from

bysyncify_* then you need to increase the size here.

(This and other details are documented in the pass source.) In the example above the

data structure starts at 16 , and the stack starts right after those two fields, at 24

(the end of the stack is at 1024 , but in this tiny example we’ll need only a small

fraction of it). In this example we have just one such structure, since that’s all we need

to pause and resume a single execution; to implement something like coroutines you

would use one data structure for each.

One thing you may notice if you read the instrumented code is that runtime and

sleep are not instrumented by Bysyncify, as it assumes any function calling its API

is “runtime” code - the code that controls when to unwind and rewind, and in

particular, unwinding must stop when it reaches there! This is necessary for using

Bysyncify in pure wasm, as otherwise all the wasm would be instrumented and

unwinding would return to the place that called into the wasm. In the next section we’ll

see how to unwind and rewind from JavaScript, in which case the “runtime” is outside

the wasm.

Example: JavaScript

// TODO: ensure a Binaryen tag

Controlling unwinding and rewinding from JavaScript is very easy: Bysyncify exports

the four API methods, and you can use them in a similar way as in the last section.

Just for fun in this example we’ll show how to do everything in JS, including running

Binaryen to call Bysyncify, which we can do thanks to binaryen.js. You can get it with

npm install binaryen . Then run this JavaScript in node :

// example.js

Pause and Resume WebAssembly with Bysyncify http://127.0.0.1:4000/blog/wasm/2019/09/09/bysy...

5 of 19 7/5/19, 9:38 AM

var binaryen = require("binaryen");

// Create a module from text.

var module = new binaryen.parseText(`

(module

(memory 1 1)

(import "env" "before" (func $before))

(import "env" "sleep" (func $sleep (param i32)))

(import "env" "after" (func $after))

(export "memory" (memory 0))

(export "main" (func $main))

(func $main

(call $before)

(call $sleep (i32.const 2000))

(call $after)

)

)

`);

// Run the Bysyncify pass, with (minor) optimizations.

binaryen.setOptimizeLevel(1);

module.runPasses(['bysyncify']);

// Get a wasm binary and compile it to an instance.

var binary = module.emitBinary();

var compiled = new WebAssembly.Module(binary);

var instance = new WebAssembly.Instance(compiled, {

env: {

before: function() {

console.log('before!');

setTimeout(function() {

console.log('(an event that happens during the sleep)');

}, 1000);

},

sleep: function(ms) {

if (!sleeping) {

// We are called in order to start a sleep/unwind.

Pause and Resume WebAssembly with Bysyncify http://127.0.0.1:4000/blog/wasm/2019/09/09/bysy...

6 of 19 7/5/19, 9:38 AM

console.log('sleep...');

// Fill in the data structure. The first value has the stack location,

// which for simplicity we can start right after the data structure itself.

view[DATA_ADDR >> 2] = DATA_ADDR + 8;

// The end of the stack will not be reached here anyhow.

view[DATA_ADDR + 4 >> 2] = 1024;

exports.bysyncify_start_unwind(DATA_ADDR);

sleeping = true;

// Resume after the proper delay.

setTimeout(function() {

console.log('timeout ended, starting to rewind the stack');

exports.bysyncify_start_rewind(DATA_ADDR);

// The code is now ready to rewind; to start the process, enter the

// first function that should be on the call stack.

exports.main();

}, ms);

} else {

// We are called as part of a resume/rewind. Stop sleeping.

console.log('...resume');

exports.bysyncify_stop_rewind();

sleeping = false;

}

},

after: function() {

console.log('after!');

}

}

});

var exports = instance.exports;

var view = new Int32Array(exports.memory.buffer);

// Global state for running the program.

var DATA_ADDR = 16; // Where the unwind/rewind data structure will live.

var sleeping = false;

// Run the program. When it pauses control flow gets to here, as the

// stack has unwound.

exports.main();

Pause and Resume WebAssembly with Bysyncify http://127.0.0.1:4000/blog/wasm/2019/09/09/bysy...

7 of 19 7/5/19, 9:38 AM

console.log('stack unwound');

exports.bysyncify_stop_rewind();

Here is the output from running that code:

before!

sleep...

stack unwound

(an event that happens during the sleep)

timeout ended, starting to rewind the stack

...resume

after!

The key thing here is that we start a sleep, unwind the stack, and can then handle an

event - that event would not arrive if we were not running asynchronously! After that,

we rewind the stack, and proceed normally.

Most of the details here are direct parallels to the pure wasm example from earlier:

sleep is called more than once, we use a similar data structure, and so forth.

Example: Emscripten

// TODO: ensure an Emscripten release

The first two examples showed how to use Bysyncify at a low level, basically

implementing your own runtime. Let’s see a higher-level example now where the

runtime is already provided: writing C code using Emscripten.

Emscripten needs something like Bysyncify because the native APIs that Emscripten

supports (POSIX file reading, etc.) are often synchronous, while Web APIs are

generally asynchronous. For that reason Emscripten has had the Asyncify and

Emterpreter-Async features, which help codebases be ported to the Web that

otherwise would need a massive refactoring. Emscripten can use Bysyncify as a third-

generation solution here. To do so, simply build with

emcc -s BYSYNCIFY [..]

Pause and Resume WebAssembly with Bysyncify http://127.0.0.1:4000/blog/wasm/2019/09/09/bysy...

8 of 19 7/5/19, 9:38 AM

That will run Bysyncify itself, and enable synchronous versions of various APIs like

emscripten_sleep, emscripten_wget , etc. For example, you can write code like

this (note: we use EM_JS to make it convenient to mix JS and C):

// example.cpp

#include <emscripten.h>

#include <stdio.h>

// start_timer(): call JS to set an async timer for 500ms

EM_JS(void, start_timer, (), {

Module.timer = false;

setTimeout(function() {

Module.timer = true;

}, 500);

});

// check_timer(): check if that timer occurred

EM_JS(bool, check_timer, (), {

return Module.timer;

});

int main() {

start_timer();

// "Infinite loop", synchronously poll for the timer.

while (1) {

if (check_timer()) {

printf("timer happened!\n");

return 0;

}

printf("sleeping...\n");

emscripten_sleep(100);

}

}

This contains an “infinite loop” that you normally can’t do on the Web - no event

(including the setTimeout) will happen until you return to the main event loop. But if

you compile that with emcc example.cpp -s BYSYNCIFY and run nodejs

a.out.js , then you’ll see something like

Pause and Resume WebAssembly with Bysyncify http://127.0.0.1:4000/blog/wasm/2019/09/09/bysy...

9 of 19 7/5/19, 9:38 AM

sleeping...

sleeping...

sleeping...

sleeping...

sleeping...

timer happened!

With Bysyncify those sleeps are actual returns to the main event loop!

Implementing something like emscripten_sleep is very simple using Emscripten’s

JS runtime support: it’s basically just this:

function emscripten_sleep(ms) {

Bysyncify.handleSleep(function(wakeUp) {

setTimeout(wakeUp, ms);

});

}

handleSleep handles the “double call” issue from before automatically: you just

provide it with the code to run (here, a setTimeout), and you call wakeUp at the

right time in the future, and everything just works!

You don’t need to look at the implementation of handleSleep in order to use the API in

C, but it may be interesting if you’re thinking of implementing support for Bysyncify in

another language outside of Emscripten. (If so, let me know if I can help!)

Note that Emscripten only supports Bysyncify in the new LLVM wasm backend path; it

won’t work with the older “fastcomp” backend, which is where Asyncify and the

Emterpreter work. In other words, if you use Asyncify or the Emterpreter then you will

need to upgrade to the wasm backend and to Bysyncify at the same time.

How Bysyncify works

You don’t need to understand how Bysyncify works in order to use it. If you’re not

interested in that you can skip this section.

The basic capabilities we need in something like Bysyncify are to unwind and rewind

Pause and Resume WebAssembly with Bysyncify http://127.0.0.1:4000/blog/wasm/2019/09/09/bysy...

10 of 19 7/5/19, 9:38 AM

the call stack, to jump back to the right place in the middle of the function in each

case, and to preserve locals while doing so. Saving and reloading locals is fairly

straightforward; what is trickier is to get back to the right place in the middle of control

flow. There are many possible ways to do this. As mentioned earlier Emscripten has

had the Asyncify and Emterpreter features for this, and Bysyncify tries to improve on

them, so it’s interesting to briefly summarize the history here.

Asyncify

Asyncify works on LLVM IR. It adds new control flow branches as needed, so that the

entry to the function can reach all possible places we may resume at, and checks for

unwinding after each call. An advantage here is that we can let the LLVM optimizer

run, so it may be able to improve that control flow in some ways. A disadvantage

though is that the transformed code is fairly pathological, as it can contain irreducibility

like branches directly into a deeply nested inner loop, which wasm can’t represent.

The process of fixing up such complex control flow may end up unoptimal.

Local state is also a problem for code size, as Asyncify by necessity operates on

LLVM’s SSA registers. There are usually many more such registers than there are

locals in the final wasm, and worse, each change to control flow can cause more

locals to be needed due to merges and phis. In practice we saw huge code size

increases sometimes which limited usability.

Note that Asyncify has no relation to LLVM coroutines (LLVM added them in 2016,

Asyncify is from 2014). LLVM coroutines avoid the above problem with local state by

not doing the full lowering at the IR level, which is good, but also means that each

backend must support them, and the LLVM wasm backend doesn’t yet. It may be

interesting to implement coroutines there; one option might be to use Bysyncify for

that.

Emterpreter

The Emterpreter is a little interpreted VM implemented in asm.js that runs a custom

bytecode (which asm.js is compiled into). As a VM, it can easily pause and resume

execution, since the locals are already on the stack, and there is an actual program

counter! This also has a guarantee of not increasing code size, since the bytecode is

smaller than asm.js or wasm, and the VM itself is negligible in anything but a trivially

Pause and Resume WebAssembly with Bysyncify http://127.0.0.1:4000/blog/wasm/2019/09/09/bysy...

11 of 19 7/5/19, 9:38 AM

small program.

The obvious problem of course is that as an interpreter this is quite slow. The main

solution to that is selective interpreting: by telling the Emterpreter which code to

convert and which to leave at full speed, you can keep the important code at full

speed. That works if whenever you unwind/rewind there is only emterpreted code on

the stack (as we can’t unwind/rewind anything else). In other words, if you have

something like this (in JS-like pseudocode):

function caller() {

var x = foo();

sleep(100);

return x;

}

Then if foo can’t unwind the stack, you can run it at full speed. You only need to

emterpret caller , which may be fine if doesn’t take a significant amount of time

itself anyhow.

Bysyncify

As mentioned earlier Bysyncify tries to improve on those earlier approaches. The first

design decision is that it operates on wasm. That avoids the problem with many SSA

registers that we mentioned earlier, and also Bysyncify integrates with the Binaryen

optimizer to reduce the number of locals as much as possible.

The big question is then what to do about control flow. Bysyncify does something like

this to that last code snippet (again, in JS-like pseudocode):

function caller() {

var x;

if (rewinding) { .. restore x .. }

if (normal) {

x = foo();

}

if (normal || .. check call index ..) {

sleep(100);

Pause and Resume WebAssembly with Bysyncify http://127.0.0.1:4000/blog/wasm/2019/09/09/bysy...

12 of 19 7/5/19, 9:38 AM

if (unwinding) {

.. save call index and x ..

return;

}

}

return x;

}

This may look confusing at first, but it’s really pretty simple. If we are rewinding, we

start by restoring the local state. We also we guard most code with checks on whether

we are running normally - if we are rewinding, we must skip that code, since we’ve

already executed it. When we reach a call that might unwind the stack, we have a “call

index” for it so that we know which call to return to inside each function. If the call

starts an unwinding, we save the call index and local state and exit immediately. Or if

we are rewinding, then the call will set the state to normal, and then we will simply

continue to execute on from the right place.

The key principle here is that we don’t do any complex CFG transformations. Instead,

Bysyncify’s approach is to skip code while rewinding, always moving forward so that

we eventually get to the right place. Importantly, we can put those ifs around whole

clumps of code that can’t unwind, like a loop without a call:

if (normal) {

for (var i = 0; i < 1000; i++) {

total += i;

}

}

The entire loop is inside the if, which means that it runs at full speed! This is a big part

of why Bysyncify is faster than you’d expect. Also, those ifs are well-predicted so

modern CPUs aren’t slowed down by them much, assuming unwind/rewinding are

fairly rare events. Another optimization Bysyncify does is a whole-program analysis to

see what can unwind the stack, which is why we didn’t check for unwinding after

calling foo . Bysyncify will also not modify a function at all if it sees it doesn’t need to.

And unlike Asyncify, Bysyncify avoids any unpredictable overhead from irreducibility

since it never creates any.

In summary, the general idea is to keep skipping code while rewinding. This may be

Pause and Resume WebAssembly with Bysyncify http://127.0.0.1:4000/blog/wasm/2019/09/09/bysy...

13 of 19 7/5/19, 9:38 AM

less efficient than a direct CFG branch straight to the right place, but it is simple as

well as predictable both in the code we generate and its runtime performance; and by

analyzing the entire program we only add that overhead where it is actually needed.

Next we’ll see performance numbers for this.

Measurements

General overhead

Bysyncify’s checks about unwinding and rewinding the stack are expected to add

overhead since they add work, and they can affect the liveness and interferences of

locals etc. How expensive is this?

We’ll focus on code size here; see notes later down on speed. There are 4 interesting

measurements to make here, that we’ll see in the chart below:

normal - The benchmark compiled normally.

bysyncify (worst) - The benchmark compiled with bysyncify in the most naive,

worst way. Here we assume that any call to an import may unwind/rewind the

stack (we consider imports because Emscripten controls unwinding/rewinding in

JS, and not from inside wasm).

bysyncify+list - Same as the last, but also with a list of the only imports that can

unwind/rewind the stack (using the option bysyncify-imports to Bysyncify;

see the pass source for details).

bysyncify+list-indirect - Same as the last, but also assuming indirect calls can’t

lead to an unwind/rewind of the stack (using the option bysyncify-ignore-

indirect).

Pause and Resume WebAssembly with Bysyncify http://127.0.0.1:4000/blog/wasm/2019/09/09/bysy...

14 of 19 7/5/19, 9:38 AM

Code size measurements in bytes (lower is better), compiled with Emscripten.

The first thing to note is that the size overhead is in the 1-2x range, that is, the binary

is around 50% larger on average. Even on the realistic macrobenchmarks on the right

(in ALL CAPS) it barely exceeds 2. In other words, there is significant overhead, but

it’s fairly predictable and not extreme. That this is what we see on the worst case,

where we instrument all the code, is encouraging!

Looking more in depth, if we compare “bysyncify (worst)” to “bysyncify+list”, then there

is a noticeable improvement. For example, on Box2D it’s about 25% smaller. What’s

going on here is that if we tell Bysyncify which imports can start an unwind/rewind and

which can’t, then its whole-program analysis can figure out that a lot of code doesn’t

need to be instrumented at all.

However, this fails on larger programs for a specific reason: indirect calls. Once you

have enough of them it becomes very hard to statically analyze control flow. Poppler

is the largest benchmark here, and it hardly benefits from the list of imports for this

reason.

If we compare “bysyncify+list” to “bysyncify+list-indirect”, where we ignore indirect

calls, then almost all the overhead vanishes, on every single benchmark! Of course,

“bysyncify+list-indirect” is the best possible case: we tell Bysyncify exactly what can

unwind/rewind, and we also don’t actually have any unwind/rewind operations here,

since these are normal computational benchmarks - they don’t actually call sleep !

The worst case was still realistic because Bysyncify thinks any import can

unwind/rewind, so it instruments lots more code than realistically necessary even if we

had sleep calls. And the point of the best case is that it shows that with the right

information we can remove all the overhead.

So far we talked about code size. The numbers for speed are mostly similar, or better

- that is, if the binary is 20% bigger, it tends to be at worst 20% slower. However, I did

Pause and Resume WebAssembly with Bysyncify http://127.0.0.1:4000/blog/wasm/2019/09/09/bysy...

15 of 19 7/5/19, 9:38 AM

notice one large outlier, SQLite, on which the slowdown is around 5x. That appears to

be because of the huge interpreter-like function, which goes from 150K (already big!)

of wasm binary to 300K. The larger problem is probably with the locals: they go from

25 to 27, which doesn’t seem so bad (Binaryen works hard to keep that number low!)

but they hide the fact that all the extra branches and the saving/restoring code for the

locals increases their live ranges dramatically - for many of them, across the whole

function, which means a lot more interference, spilling and so forth; VMs may also limit

compilation to the baseline tier on such pathological code. A 5x slowdown is not that

surprising on such an extreme case.

In summary: The general overhead of Bysyncify can be limited to occur only where it

is actually needed (if you can avoid indirect calls being in the way) and where it does

occur it should do no worse than double size / halve speed for most code. However,

extremely massive functions may end up with larger slowdowns.

More on indirect calls

Using a list of imports is probably possible for most use cases. In Emscripten for

example we pass it emscripten_sleep and other relevant sync APIs and syscalls.

However, ignoring indirect calls is less obvious - some programs simply do have

indirect calls on the call stack for an unwind/rewind operation, and the overhead there

may approach the worst case from before. In such cases the true solution for maximal

performance is probably a new WebAssembly spec proposal for coroutines, as

mentioned earlier.

On the other hand, it is also common to only need that support in the main event loop,

something like this:

int main() {

startUp();

while (1) {

renderFrame();

handleEvents();

sleep(timeToNextFrame());

}

}

This type of “infinite loop” is common in games and other things. If that is the only call

Pause and Resume WebAssembly with Bysyncify http://127.0.0.1:4000/blog/wasm/2019/09/09/bysy...

16 of 19 7/5/19, 9:38 AM

to sleep, then it is perfectly safe to ignore indirect calls in Bysyncify, and when passing

that flag it should only end up instrumenting main() itself. In that case, the overhead

should be almost zero! Overall, if you can ignore indirect calls when using Bysyncify, it

can be extremely helpful. To do so with wasm-opt pass --pass-arg=bysyncify-

ignore-indirect , or in Emscripten use -s BYSYNCIFY_IGNORE_INDIRECT .

Unwind/rewind speed

The measurements before looked at the general overhead: how much bigger code

becomes and how much slower it is when running normally. Now let’s take a look at

how fast we can “context switch”, that is, unwind and rewind the stack. Here are some

numbers on the fannkuch benchmark, modified to sleep in the most inconvenient

place (the innermost loop).

Unwind/rewind measurements on fannkuch, in seconds (lower is better).

The first two bars show that just enabling Bysyncify adds some overhead (22%), even

without actually sleeping - that’s the general (worst-case) overhead we measured

before. The other bars show what happens when we do actually sleep: 1 time for 1ms,

1000 times for 1 ms, or 1000 times for 0ms. A single sleep’s impact is so small it’s

basically impossible to measure, which is good! A thousand sleeps of 1ms should add

1 second (the total of the time spent sleeping); in practice it adds 1.18 seconds, with

Pause and Resume WebAssembly with Bysyncify http://127.0.0.1:4000/blog/wasm/2019/09/09/bysy...

17 of 19 7/5/19, 9:38 AM

some noise (not pictured). That it’s close to the theoretical minimum is good, and the

noise suggests the overhead is related to the accuracy of the timer used in

setTimeout. Indeed, doing the same amount of sleeps for 0ms (which should

immediately resume in the next event loop without waiting at all) takes about the same

time, so the event loop itself is adding much of that extra overhead.

In summary: The unwind/rewind overhead of Bysyncify is basically negligible if you

are using it to do anything asynchronous. (It would also be interesting to measure

something non-asynchronous, like swapping between two coroutines, but I don’t have

a good benchmark for that and this post is quite long already!)

The importance of optimization

In the examples earlier we told Binaryen to optimize while it ran Bysyncify. Binaryen

doesn’t optimize by default, because that keeps things as modular as possible - each

pass, like Bysyncify, does the least possible by itself, and it’s simpler to write such

passes if we assume that the other passes will optimize for us.

It is very important to optimize while running Bysyncify, for both code size and speed,

as the following numbers on the Fannkuch benchmark show:

Fannkuch code size measurements (bytes; lower is better).

Pause and Resume WebAssembly with Bysyncify http://127.0.0.1:4000/blog/wasm/2019/09/09/bysy...

18 of 19 7/5/19, 9:38 AM

Running wasm-opt --bysyncify without optimizations leads to huge code sizes,

while -O --bysyncify (which uses Binaryen’s default optimization level) produces

code sizes like what we’d expect given the data from before. Remember to optimize!

Final thoughts

Hopefully Bysyncify is useful for people that have synchronous wasm code they want

to run asynchronously, or to pause and resume, etc. If you do something cool with it,

or you find a bug, let me know!

Pause and Resume WebAssembly with Bysyncify http://127.0.0.1:4000/blog/wasm/2019/09/09/bysy...

19 of 19 7/5/19, 9:38 AM

