-
Notifications
You must be signed in to change notification settings - Fork 1
/
pca_intro.jl
1419 lines (1159 loc) · 53.3 KB
/
pca_intro.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
### A Pluto.jl notebook ###
# v0.19.6
using Markdown
using InteractiveUtils
# This Pluto notebook uses @bind for interactivity. When running this notebook outside of Pluto, the following 'mock version' of @bind gives bound variables a default value (instead of an error).
macro bind(def, element)
quote
local iv = try Base.loaded_modules[Base.PkgId(Base.UUID("6e696c72-6542-2067-7265-42206c756150"), "AbstractPlutoDingetjes")].Bonds.initial_value catch; b -> missing; end
local el = $(esc(element))
global $(esc(def)) = Core.applicable(Base.get, el) ? Base.get(el) : iv(el)
el
end
end
# ╔═╡ 69cd367a-959e-11ec-1d11-dbb242dc1861
begin
using LinearAlgebra
using Markdown
using MultivariateStats
using Plots, LaTeXStrings
using PlutoUI
using Random
using Statistics
using HypertextLiteral
end;
# ╔═╡ d8f18c3f-1b9e-4bde-88f4-c407703fba27
md"""
In previous lessons, we explored machine learning approaches to regression and classification. Now, we'll steer our attention to using machine learning algorithms for _dimensional reduction_. Dimensional reduction allows us to transform high dimensional data into lower dimensional manifolds subject to some constraints. This can be useful for helping to build intuition for a high-dimensional data set. It can also be useful for reducing the computational cost of analyzing very large datasets.
There are several algorithms for dimensional reduction that impose different constraints. In this notebook, we'll start with one of the most common, [**Principal Component Analysis (PCA)**](https://en.wikipedia.org/wiki/Principal_component_analysis).
PCA performs *linear* transformations of our data. In future lessons, we'll explore additional methods for dimensional reduction can use non-linear transformations (e.g., [Kernel PCA](https://en.wikipedia.org/wiki/Kernel_principal_component_analysis), [autoencoders](https://en.wikipedia.org/wiki/Autoencoder) and T-Stochastic Neighbour Embedding [T-SNE, "tee-snee"](https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding)).
"""
# TODO? Add Uniform Manifold Approximation (UMAP). # maybe?
# ╔═╡ d7168a56-8133-4c6f-9b16-c69014991669
md"""
## Principal Component Analysis (PCA)
Principal component analysis is a computationally inexpensive and flexible unsupervised method for reducing dimensionality in a dataset. Consider a dataset with a linear relationship between the variables $x_1$ and $x_2$.
"""
# ╔═╡ 910e68dc-791a-4b91-b557-32d963f20311
md"As usual, it is good to start by visualizing our dataset."
# ╔═╡ ee8976d2-ccbd-43bc-854a-c2772892b2c4
md"""
In the Linear Regression lab, we sought to find a way to train a model to make _prediction_ trying to match the true values provided in a training dataset. The goal of principal component analysis is different: to learn about the _relationship_ between $x_1$ and $x_2$ from the data itself.
"""
# ╔═╡ 768d7d6f-300c-4da5-83cd-aa4e2854f836
md"""
### Applying PCA
Formally, PCA finds a linear transformation that diagonalizes the [sample covariance matrix](https://en.wikipedia.org/wiki/Covariance#Calculating_the_sample_covariance).
A great way to develop more intuition for what PCA does is to run it on some simulated datasets and see what it does. For now, we'll utilize a Julia package, [MultivariateStats.jl](https://github.com/JuliaStats/MultivariateStats.jl), so as to avoid being distracted by implementing the PCA algorithm. The package provides the `fit` function that takes two arguments, an algorithm and a dataset. We'll pass `PCA` to specify that's the algorithm we want it to use, and rearrange our data into a matrix with variables in the rows and observations in the columns.
Since our dataset has $N$ datapoints, each with two variables $x_1$ and $x_2$, we will combine them into a single ``N\times 2`` matrix and take its transpose to produce a ``2 \times N`` matrix called $X$.
"""
# ╔═╡ 840e003f-df3d-4fde-94b5-c819ebec9be9
md"""
Now we can call the `fit` function with `PCA` and `X` as the argument. Further documentation on syntax can be found [here](https://multivariatestatsjl.readthedocs.io/en/stable/pca.html).
(Implementation Note: This `fit` function assumes that each *column* of X is an observation (rather than the more typical format of each row of data storing one observations. That's why we took the matrix transpose in the cell above. Fortunately, Julia is very efficient about allowing users to transform matrices without triggering unnecessary copying of data.)
"""
# ╔═╡ 79246181-26d4-436a-aad3-0709c965833a
md"""
After fitting the data, all of the information is tucked away inside the `model` variable. There are several functions that you can call on `model`. Some of the pertinent ones are:
- `projection`: get the principal components
- `principalvars`: get principal variances
- `tprincipalvar`: get total variance
- `tvar`: get the total observational variance
Let's examine those really quickly starting with `projection`.
"""
# ╔═╡ cd1dd2ea-33b8-452d-a9db-ae92a6ce4073
md"""
We find a square matrix with dimension ``N = 2``. This is expected since our input data is 2-dimensional. The columns of the matrix are made up of vectors that are known as the *principal components*. These vectors point in the directions that are orthonormal. The first principal component points in the direction of maximal variance in our dataset. The second principal component points in the direction of second largest variance (in this case it's also the least variance, since we have only 2 dimensions).
"""
# ╔═╡ 20cef775-13e0-419d-958e-66b0c185ba79
md"""
!!! tip "Terminology: Orthonormal Vectors"
Consider two vectors ``\mathbf{u},\,\mathbf{v} \in \mathbb{R}^N``. _Orthonormal_ describes the property of the vectors:
- Each vector in the set is unit length i.e. normalized:
$\mathbf{u} \cdot \mathbf{u} = 1 = \mathbf{v}\cdot\mathbf{v}$
- Each vector in the set is orthogonal to each other. This also implies that the inverse of a vector is its transpose
$\mathbf{u} \cdot \mathbf{v} = 0$
$\mathbf{u}^{-1} \mathbf{u} = \mathbf{u}^\intercal \mathbf{u} = \mathbb{1}$
where we have used ``\mathbb{1}`` to mean the identity matrix with dimension ``N``.
"""
# ╔═╡ 685e84f4-862b-4ab2-a8e1-94a97d0bef86
md"## Visualizing the Principal Components"
# ╔═╡ 5fcedebd-9df4-4e38-8623-2e344a9a93a7
md"Let plot the principal component vectors on top of our dataset."
# ╔═╡ 4c9c52e4-28cf-4518-9db7-11a06cd120d4
md"""
Hold on a second. The principal components don't look orthogonal at all!
What could explain this?
Sometimes the vector might not look orthogonal geometrically due to how it's plotted, even if they are. Try checking the boxes below to see how each affects the plot above.
"""
# ╔═╡ 17171a41-ea52-4c57-a514-2e1986ea2b0d
md"### Checking orthogonality numerically"
# ╔═╡ 28b7f757-5865-4d32-b65c-8942dc83aed2
md"""
We can check for orthogonality numerically by left multiplying the matrix with its transpose. If they are orthogonal, then we expect to see an identity matrix (or something very close due to floating point arithmetic). This test is particularly useful once you start working in higher dimensions.
"""
# ╔═╡ b156b404-b446-4663-886c-caff23ce19b7
md"## Visualizing Transformed Data"
# ╔═╡ c8a17a03-963e-4894-bf5a-73cf8bf4df57
md"""
We now have the principal components that point in the direction of maximal variance in our dataset. The power of PCA lies in the fact that we can transform our dataset such that these directions become our new axes. This is done by projecting all the points in our dataset onto the principal components.
"""
# ╔═╡ e75a69aa-8910-404c-8343-c8989bf5ca53
md"""
Explore how the principal component vectors and scores change as you vary the true slope and the scatter about the linear relationship using the boxes below.
"""
# ╔═╡ 2b8f50d1-a28d-4c35-807d-5bf8cd5be4d3
md"""
True slope: $(@bind true_slope NumberField(-3:0.2:3, default=1))
True scatter: $(@bind true_sigma NumberField(0.01:0.01:1, default=0.2))
Number of datapoints: $(@bind N NumberField(10:10:1000, default=100))
"""
# ╔═╡ d86b2d9b-805c-4740-8cdb-95d220f30170
begin # generate simulated dataset
Random.seed!(120) # For reproducibility
# N, true_slope and true_sigma are set by input widgets below
x1 = rand(N)
x1 = x1 .- mean(x1)
x2 = true_slope.*x1 .+ true_sigma.*randn(N)
x2 = x2 .- mean(x2)
end;
# ╔═╡ 1516cdc8-89fb-4398-96f0-aa6ef6114a02
begin
xlims = extrema(x1)
ylims = extrema(x2)
sharedlims = (min(first(xlims),first(ylims)), max(last(xlims), last(ylims)))
plot(x1, x2, seriestype=:scatter, legend=false, xlims=sharedlims, ylims=sharedlims)
xlabel!(L"x_1")
ylabel!(L"x_2")
end
# ╔═╡ 07014ad5-eb58-447f-b902-07e1d81dff2f
begin
X = [x1 x2]' # ' specifies matrix transpose
size(X)
end
# ╔═╡ 6b490754-dd14-4cca-b77d-16d7cb0ab858
model = fit(PCA, X)
# ╔═╡ 0255bb8f-b6cf-4def-984a-3a6ff18dfb36
principal_components = projection(model)
# ╔═╡ bcf5ef4a-e3db-4d61-a3ea-066913e7fd02
principal_components' * principal_components
# ╔═╡ 2d3099a5-7d19-4e42-b934-ef75f632fd97
X_transformed = transform(model, X);
# ╔═╡ 4a56f7d6-ce5a-4206-8de9-4ef4ab94c0c7
md"""
**Question:** What happens if you set the true scatter to be smaller? very small?
!!! hint "Hint"
The `fit` function only returns enough principal components to explain a specified fraction of the total variance (by default 99%). When the true scatter is sufficiently small, the number of principal components needed to explain nearly all of the variation decreases.
"""
# ╔═╡ b0531872-cd40-4075-b2e9-7fbbad7b8509
md"""
**Question:** What will happen if you reset the true scatter to 0.2, but make the slope larger? very small?
Before proceeding, reset the true slope to 1 and true scatter to 0.2.
"""
# ╔═╡ 7f89fa86-2b6e-4e6a-a03f-40f0019c951b
md"## Principal variances"
# ╔═╡ 01e9800a-c1ff-44fd-99a1-0667e0a55317
md"""
We can also examine the _principal variance_ for each of the principal components. The principal components point in the directions of maximal variance, and the principal variance tells us how much variation is observed in that direction.
"""
# ╔═╡ ffe18a3f-4c97-496b-9b92-d6e59ab1bffd
principalvars(model)
# ╔═╡ 1ef8c7d6-6e08-42a5-ac38-e2de50b5337d
md"""
It makes sense that the first component has the most variation, since it is pointing along the linear curve. What's more useful is to rewrite these values as a fraction of the total variance.
"""
# ╔═╡ b2bff415-d191-4457-9aa9-8b6fc9650d88
principalvars(model)./tprincipalvar(model)
# ╔═╡ a9824f50-e47b-453d-8213-5857315fe8d0
per_var = (length(principalvars(model))==2) ? round.(principalvars(model)./tprincipalvar(model).*100, digits=1) : (100,0);
# ╔═╡ 91d8448d-46fd-40da-b6f3-5a24d8bc6611
md"""
We can now see that the first principal component accounts for about $(per_var[1])% of variations in our dataset while the second principal component only accounts for about $(per_var[2])%. This means, if we reconstructed our data using only the first component, then the resulting dataset would have $(per_var[1])% of the variance of the original dataset.
**Question:** How do you expect the principal variances to change as you decrease the true scatter or increase the slope?
"""
# ╔═╡ e8a5b5e3-9645-4f78-9bca-897493bc82f0
md"""
### Changing the criteria for picking number of principal components
In fact, the `fit` function takes an optional argument `pratio` that allows us to specify that we want it to return the smallest number of principal components that account for a given fraction of the total variance in your dataset.
Imagine if you had a dataset with 1000 variables per observation (e.g., a spectra). It's likely that you can account for 99% of variations in your dataset with a number of principal components much less than the number of observations (e.g., number of pixels in each spectra). By reducing the dimension of your dataset, it becomes practical to work with datasets containing more objects and/or to apply more computationally expensive algorithms to an existing dataset!
"""
# ╔═╡ 3b980f12-cb13-4ffa-88fc-b91ba6ee850d
md"""
We can visualize this reconstruction by setting a smaller value of `pratio`:
$(@bind pratio_for_reconstruction NumberField(0.1:0.01:1.0, default=0.9))
"""
# ╔═╡ 3971d349-c254-4f16-84be-c4fccec9290c
reduced_model = fit(PCA, X; pratio = pratio_for_reconstruction);
# ╔═╡ cddb22b3-2d7b-4ade-94d5-8232e0a383a3
let
X_transformed = transform(reduced_model, X)
if size(X_transformed,1) == 2
plot(X_transformed[1,:], X_transformed[2,:], seriestype=:scatter, legend=false, ylims=(-1,1))
ylabel!("Score PC 2")
else
plot(X_transformed[1,:], [0], seriestype=:scatter, legend=false, ylims=(-1,1))
end
xlabel!("Score PC 1")
end
# ╔═╡ 890f3052-7848-4b02-97f6-a9948c6d9bdf
begin
scatter(x1, x2, markeralpha=0.5,label="Original data", legend=:topleft)
xx = reconstruct(reduced_model, transform(reduced_model, X))
scatter!(xx[1, :], xx[2, :], markeralpha=0.5, label="Reconstructed data")
xlabel!(L"x_1")
ylabel!(L"x_2")
title!("Reconstructing Data")
end
# ╔═╡ f1ad53ca-363f-4007-86cb-55959c37356b
md"""
**Question:** How does the reconstructed data compare to the original data, if you set `pratio` to be near 1?
**Question:** How does the the reconstructed data compare to the original data, if you reduce `pratio`?
**Question:** How would your answer to the previous question change if the data being analyzed had more than 2 dimensions?
"""
# ╔═╡ af42e120-aaa4-427c-99b3-dd7218bd19a4
md"""
## Next steps
- Can you think of how dimensional reduction algorithms like PCA might be applicable to your research interests?
- What complications might arise with vanilla PCA?
"""
# ╔═╡ 744b2603-6fb0-413d-9840-6a6a646159de
md"""
## Additional Resources
- [PCA Tutorial by Jon Shlens](https://www.cs.princeton.edu/picasso/mats/PCA-Tutorial-Intuition_jp.pdf)
- If you're interested in further building your intuition for PCA, experiment with the excellent applet [setosa.io](https://setosa.io/ev/principal-component-analysis/).
- There are many, many applications of PCA in the astronomical literature. A couple of early examples are [Deeming (1964)](https://ui.adsabs.harvard.edu/abs/1964MNRAS.127..493D/abstract) and [Faber (1973)](https://ui.adsabs.harvard.edu/abs/1973ApJ...179..731F/abstract).
- In modern astroinformatics, PCA is often used as in early pre-processing step to transform the data into features that can be used by other machine learning methods.
"""
# ╔═╡ e9f8d3f7-ae46-4793-8eac-fd8ad711e4f7
md"""
# Setup & Helper code
"""
# ╔═╡ 7dc4f9f7-ee82-4af1-81cf-41201fdbdfd1
TableOfContents()
# ╔═╡ b8b39dc2-d44f-45f5-9094-ac8299d9ccec
function plot_arrow!(plt, v, offset = [0, 0])
quiver!(plt,[offset[1]], [offset[2]], quiver = ([v[1]], [v[2]]), linewidth=3)
end
# ╔═╡ 63b161f2-24f4-437e-b7f4-abb8bb4517cb
function aside(x; v_offset=0)
@htl("""
<style>
@media (min-width: calc(700px + 30px + 300px)) {
aside.plutoui-aside-wrapper {
position: absolute;
right: -11px;
width: 0px;
}
aside.plutoui-aside-wrapper > div {
width: 300px;
}
}
</style>
<aside class="plutoui-aside-wrapper" style="top: $(v_offset)px">
<div>
$(x)
</div>
</aside>
""")
end
# ╔═╡ 5847fa39-05bb-4c48-95c7-93a68b36b73d
aside(md"""
!!! tip "Pro Tip: How to perform PCA"
The typical method for computing principal components (and the one used here) is the [Singular Value Decomposition (SVD)](https://en.wikipedia.org/wiki/Singular_value_decomposition) algorithm. For a typical problem where you have many more observations ($N$) than the number of features being observed ($M$), the computational cost scales roughly as $\mathcal{O}(N\times~M^2)$. For many problems this is a robust and efficient way to compute the PCA decomposition. However, if you have a very large datasets, then the computational cost (or memory required) can become prohibitive. In that case, it can be useful to compute a PCA decomposition using the [Power Iteration method](https://en.wikipedia.org/wiki/Power_iteration) (here's a [nice explanation](http://theory.stanford.edu/~tim/s15/l/l8.pdf)). The power iteration method is particularly useful when you only want to compute the first few principal components of a large data set.
""")
# ╔═╡ 30a05385-d378-4299-88bc-402967d67187
nbsp = html" ";
# ╔═╡ 18218e32-3dab-49ba-b1d0-fd2192367d3b
md"""
Use common axis limits: $(@bind use_common_axis_limits CheckBox(default=false))
$nbsp $nbsp $nbsp
Use a square aspect ratio $(@bind use_square_aspect_ratio CheckBox(default=false))
"""
# ╔═╡ 55829368-871a-4c4c-9fb4-0582832363a4
function plot_sim_data_and_principal_componets()
plt = plot(X[1, :], X[2, :], seriestype=:scatter, legend=false, markeralpha=0.3,
xlims=use_common_axis_limits ? sharedlims : xlims, ylims=use_common_axis_limits ? sharedlims : ylims,
size=use_square_aspect_ratio ? (800,800) : (800, 600))
xlabel!(plt,L"x_1")
ylabel!(plt,L"x_2")
PC = model.proj
s = sqrt.(principalvars(model))
μ = mean(X , dims = 2)
plot_arrow!(plt, s[1] * PC[:, 1])
if length(s) >=2
plot_arrow!(plt, s[2] * PC[:, 2])
end
plt
end
# ╔═╡ 089430af-8118-4cc9-bf3c-0b1652c116fa
plot_sim_data_and_principal_componets()
# ╔═╡ 86be09b7-600f-4049-b18d-9a7aa0fc554e
let
plt1 = plot_sim_data_and_principal_componets()
plot!(plt1,size=(800,400))
plt2 = plot(xlabel="Score PC 1", ylabel="Score PC 2", ylims=(-2*true_sigma,2*true_sigma), size=(800,400))
if size(X_transformed,1) == 2
plot!(plt2,X_transformed[1, :], X_transformed[2, :], seriestype=:scatter, legend=false)
else
plot!(plt2,X_transformed[1, :], zeros(N), seriestype=:scatter, legend=false)
end
plot(plt1,plt2, layout=@layout [a b])
end
# ╔═╡ d8964ca6-4e26-4aee-ad94-1412428158f1
br = html"<br />";
# ╔═╡ a53948d8-9deb-4802-9ab9-151e3f938070
md"""
# Lab 6: Dimesional Reduction: $br Intro to PCA
#### [Penn State Astroinformatics Summer School 2022](https://sites.psu.edu/astrostatistics/astroinfo-su22-program/)
#### Kadri Nizam & [Eric Ford](https://www.personal.psu.edu/ebf11)
"""
# ╔═╡ 00000000-0000-0000-0000-000000000001
PLUTO_PROJECT_TOML_CONTENTS = """
[deps]
HypertextLiteral = "ac1192a8-f4b3-4bfe-ba22-af5b92cd3ab2"
LaTeXStrings = "b964fa9f-0449-5b57-a5c2-d3ea65f4040f"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
Markdown = "d6f4376e-aef5-505a-96c1-9c027394607a"
MultivariateStats = "6f286f6a-111f-5878-ab1e-185364afe411"
Plots = "91a5bcdd-55d7-5caf-9e0b-520d859cae80"
PlutoUI = "7f904dfe-b85e-4ff6-b463-dae2292396a8"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
Statistics = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
[compat]
HypertextLiteral = "~0.9.4"
LaTeXStrings = "~1.3.0"
MultivariateStats = "~0.9.1"
Plots = "~1.29.0"
PlutoUI = "~0.7.39"
"""
# ╔═╡ 00000000-0000-0000-0000-000000000002
PLUTO_MANIFEST_TOML_CONTENTS = """
# This file is machine-generated - editing it directly is not advised
julia_version = "1.7.0"
manifest_format = "2.0"
[[deps.AbstractPlutoDingetjes]]
deps = ["Pkg"]
git-tree-sha1 = "8eaf9f1b4921132a4cff3f36a1d9ba923b14a481"
uuid = "6e696c72-6542-2067-7265-42206c756150"
version = "1.1.4"
[[deps.Adapt]]
deps = ["LinearAlgebra"]
git-tree-sha1 = "af92965fb30777147966f58acb05da51c5616b5f"
uuid = "79e6a3ab-5dfb-504d-930d-738a2a938a0e"
version = "3.3.3"
[[deps.ArgTools]]
uuid = "0dad84c5-d112-42e6-8d28-ef12dabb789f"
[[deps.Arpack]]
deps = ["Arpack_jll", "Libdl", "LinearAlgebra", "Logging"]
git-tree-sha1 = "91ca22c4b8437da89b030f08d71db55a379ce958"
uuid = "7d9fca2a-8960-54d3-9f78-7d1dccf2cb97"
version = "0.5.3"
[[deps.Arpack_jll]]
deps = ["Artifacts", "CompilerSupportLibraries_jll", "JLLWrappers", "Libdl", "OpenBLAS_jll", "Pkg"]
git-tree-sha1 = "5ba6c757e8feccf03a1554dfaf3e26b3cfc7fd5e"
uuid = "68821587-b530-5797-8361-c406ea357684"
version = "3.5.1+1"
[[deps.Artifacts]]
uuid = "56f22d72-fd6d-98f1-02f0-08ddc0907c33"
[[deps.Base64]]
uuid = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f"
[[deps.Bzip2_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "19a35467a82e236ff51bc17a3a44b69ef35185a2"
uuid = "6e34b625-4abd-537c-b88f-471c36dfa7a0"
version = "1.0.8+0"
[[deps.Cairo_jll]]
deps = ["Artifacts", "Bzip2_jll", "Fontconfig_jll", "FreeType2_jll", "Glib_jll", "JLLWrappers", "LZO_jll", "Libdl", "Pixman_jll", "Pkg", "Xorg_libXext_jll", "Xorg_libXrender_jll", "Zlib_jll", "libpng_jll"]
git-tree-sha1 = "4b859a208b2397a7a623a03449e4636bdb17bcf2"
uuid = "83423d85-b0ee-5818-9007-b63ccbeb887a"
version = "1.16.1+1"
[[deps.ChainRulesCore]]
deps = ["Compat", "LinearAlgebra", "SparseArrays"]
git-tree-sha1 = "9489214b993cd42d17f44c36e359bf6a7c919abf"
uuid = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4"
version = "1.15.0"
[[deps.ChangesOfVariables]]
deps = ["ChainRulesCore", "LinearAlgebra", "Test"]
git-tree-sha1 = "1e315e3f4b0b7ce40feded39c73049692126cf53"
uuid = "9e997f8a-9a97-42d5-a9f1-ce6bfc15e2c0"
version = "0.1.3"
[[deps.ColorSchemes]]
deps = ["ColorTypes", "ColorVectorSpace", "Colors", "FixedPointNumbers", "Random"]
git-tree-sha1 = "7297381ccb5df764549818d9a7d57e45f1057d30"
uuid = "35d6a980-a343-548e-a6ea-1d62b119f2f4"
version = "3.18.0"
[[deps.ColorTypes]]
deps = ["FixedPointNumbers", "Random"]
git-tree-sha1 = "0f4e115f6f34bbe43c19751c90a38b2f380637b9"
uuid = "3da002f7-5984-5a60-b8a6-cbb66c0b333f"
version = "0.11.3"
[[deps.ColorVectorSpace]]
deps = ["ColorTypes", "FixedPointNumbers", "LinearAlgebra", "SpecialFunctions", "Statistics", "TensorCore"]
git-tree-sha1 = "d08c20eef1f2cbc6e60fd3612ac4340b89fea322"
uuid = "c3611d14-8923-5661-9e6a-0046d554d3a4"
version = "0.9.9"
[[deps.Colors]]
deps = ["ColorTypes", "FixedPointNumbers", "Reexport"]
git-tree-sha1 = "417b0ed7b8b838aa6ca0a87aadf1bb9eb111ce40"
uuid = "5ae59095-9a9b-59fe-a467-6f913c188581"
version = "0.12.8"
[[deps.Compat]]
deps = ["Dates", "LinearAlgebra", "UUIDs"]
git-tree-sha1 = "924cdca592bc16f14d2f7006754a621735280b74"
uuid = "34da2185-b29b-5c13-b0c7-acf172513d20"
version = "4.1.0"
[[deps.CompilerSupportLibraries_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "e66e0078-7015-5450-92f7-15fbd957f2ae"
[[deps.Contour]]
deps = ["StaticArrays"]
git-tree-sha1 = "9f02045d934dc030edad45944ea80dbd1f0ebea7"
uuid = "d38c429a-6771-53c6-b99e-75d170b6e991"
version = "0.5.7"
[[deps.DataAPI]]
git-tree-sha1 = "fb5f5316dd3fd4c5e7c30a24d50643b73e37cd40"
uuid = "9a962f9c-6df0-11e9-0e5d-c546b8b5ee8a"
version = "1.10.0"
[[deps.DataStructures]]
deps = ["Compat", "InteractiveUtils", "OrderedCollections"]
git-tree-sha1 = "d1fff3a548102f48987a52a2e0d114fa97d730f0"
uuid = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
version = "0.18.13"
[[deps.DataValueInterfaces]]
git-tree-sha1 = "bfc1187b79289637fa0ef6d4436ebdfe6905cbd6"
uuid = "e2d170a0-9d28-54be-80f0-106bbe20a464"
version = "1.0.0"
[[deps.Dates]]
deps = ["Printf"]
uuid = "ade2ca70-3891-5945-98fb-dc099432e06a"
[[deps.DelimitedFiles]]
deps = ["Mmap"]
uuid = "8bb1440f-4735-579b-a4ab-409b98df4dab"
[[deps.DocStringExtensions]]
deps = ["LibGit2"]
git-tree-sha1 = "b19534d1895d702889b219c382a6e18010797f0b"
uuid = "ffbed154-4ef7-542d-bbb7-c09d3a79fcae"
version = "0.8.6"
[[deps.Downloads]]
deps = ["ArgTools", "LibCURL", "NetworkOptions"]
uuid = "f43a241f-c20a-4ad4-852c-f6b1247861c6"
[[deps.EarCut_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "3f3a2501fa7236e9b911e0f7a588c657e822bb6d"
uuid = "5ae413db-bbd1-5e63-b57d-d24a61df00f5"
version = "2.2.3+0"
[[deps.Expat_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "bad72f730e9e91c08d9427d5e8db95478a3c323d"
uuid = "2e619515-83b5-522b-bb60-26c02a35a201"
version = "2.4.8+0"
[[deps.FFMPEG]]
deps = ["FFMPEG_jll"]
git-tree-sha1 = "b57e3acbe22f8484b4b5ff66a7499717fe1a9cc8"
uuid = "c87230d0-a227-11e9-1b43-d7ebe4e7570a"
version = "0.4.1"
[[deps.FFMPEG_jll]]
deps = ["Artifacts", "Bzip2_jll", "FreeType2_jll", "FriBidi_jll", "JLLWrappers", "LAME_jll", "Libdl", "Ogg_jll", "OpenSSL_jll", "Opus_jll", "Pkg", "Zlib_jll", "libass_jll", "libfdk_aac_jll", "libvorbis_jll", "x264_jll", "x265_jll"]
git-tree-sha1 = "d8a578692e3077ac998b50c0217dfd67f21d1e5f"
uuid = "b22a6f82-2f65-5046-a5b2-351ab43fb4e5"
version = "4.4.0+0"
[[deps.FixedPointNumbers]]
deps = ["Statistics"]
git-tree-sha1 = "335bfdceacc84c5cdf16aadc768aa5ddfc5383cc"
uuid = "53c48c17-4a7d-5ca2-90c5-79b7896eea93"
version = "0.8.4"
[[deps.Fontconfig_jll]]
deps = ["Artifacts", "Bzip2_jll", "Expat_jll", "FreeType2_jll", "JLLWrappers", "Libdl", "Libuuid_jll", "Pkg", "Zlib_jll"]
git-tree-sha1 = "21efd19106a55620a188615da6d3d06cd7f6ee03"
uuid = "a3f928ae-7b40-5064-980b-68af3947d34b"
version = "2.13.93+0"
[[deps.Formatting]]
deps = ["Printf"]
git-tree-sha1 = "8339d61043228fdd3eb658d86c926cb282ae72a8"
uuid = "59287772-0a20-5a39-b81b-1366585eb4c0"
version = "0.4.2"
[[deps.FreeType2_jll]]
deps = ["Artifacts", "Bzip2_jll", "JLLWrappers", "Libdl", "Pkg", "Zlib_jll"]
git-tree-sha1 = "87eb71354d8ec1a96d4a7636bd57a7347dde3ef9"
uuid = "d7e528f0-a631-5988-bf34-fe36492bcfd7"
version = "2.10.4+0"
[[deps.FriBidi_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "aa31987c2ba8704e23c6c8ba8a4f769d5d7e4f91"
uuid = "559328eb-81f9-559d-9380-de523a88c83c"
version = "1.0.10+0"
[[deps.GLFW_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Libglvnd_jll", "Pkg", "Xorg_libXcursor_jll", "Xorg_libXi_jll", "Xorg_libXinerama_jll", "Xorg_libXrandr_jll"]
git-tree-sha1 = "51d2dfe8e590fbd74e7a842cf6d13d8a2f45dc01"
uuid = "0656b61e-2033-5cc2-a64a-77c0f6c09b89"
version = "3.3.6+0"
[[deps.GR]]
deps = ["Base64", "DelimitedFiles", "GR_jll", "HTTP", "JSON", "Libdl", "LinearAlgebra", "Pkg", "Printf", "Random", "RelocatableFolders", "Serialization", "Sockets", "Test", "UUIDs"]
git-tree-sha1 = "b316fd18f5bc025fedcb708332aecb3e13b9b453"
uuid = "28b8d3ca-fb5f-59d9-8090-bfdbd6d07a71"
version = "0.64.3"
[[deps.GR_jll]]
deps = ["Artifacts", "Bzip2_jll", "Cairo_jll", "FFMPEG_jll", "Fontconfig_jll", "GLFW_jll", "JLLWrappers", "JpegTurbo_jll", "Libdl", "Libtiff_jll", "Pixman_jll", "Pkg", "Qt5Base_jll", "Zlib_jll", "libpng_jll"]
git-tree-sha1 = "1e5490a51b4e9d07e8b04836f6008f46b48aaa87"
uuid = "d2c73de3-f751-5644-a686-071e5b155ba9"
version = "0.64.3+0"
[[deps.GeometryBasics]]
deps = ["EarCut_jll", "IterTools", "LinearAlgebra", "StaticArrays", "StructArrays", "Tables"]
git-tree-sha1 = "83ea630384a13fc4f002b77690bc0afeb4255ac9"
uuid = "5c1252a2-5f33-56bf-86c9-59e7332b4326"
version = "0.4.2"
[[deps.Gettext_jll]]
deps = ["Artifacts", "CompilerSupportLibraries_jll", "JLLWrappers", "Libdl", "Libiconv_jll", "Pkg", "XML2_jll"]
git-tree-sha1 = "9b02998aba7bf074d14de89f9d37ca24a1a0b046"
uuid = "78b55507-aeef-58d4-861c-77aaff3498b1"
version = "0.21.0+0"
[[deps.Glib_jll]]
deps = ["Artifacts", "Gettext_jll", "JLLWrappers", "Libdl", "Libffi_jll", "Libiconv_jll", "Libmount_jll", "PCRE_jll", "Pkg", "Zlib_jll"]
git-tree-sha1 = "a32d672ac2c967f3deb8a81d828afc739c838a06"
uuid = "7746bdde-850d-59dc-9ae8-88ece973131d"
version = "2.68.3+2"
[[deps.Graphite2_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "344bf40dcab1073aca04aa0df4fb092f920e4011"
uuid = "3b182d85-2403-5c21-9c21-1e1f0cc25472"
version = "1.3.14+0"
[[deps.Grisu]]
git-tree-sha1 = "53bb909d1151e57e2484c3d1b53e19552b887fb2"
uuid = "42e2da0e-8278-4e71-bc24-59509adca0fe"
version = "1.0.2"
[[deps.HTTP]]
deps = ["Base64", "Dates", "IniFile", "Logging", "MbedTLS", "NetworkOptions", "Sockets", "URIs"]
git-tree-sha1 = "0fa77022fe4b511826b39c894c90daf5fce3334a"
uuid = "cd3eb016-35fb-5094-929b-558a96fad6f3"
version = "0.9.17"
[[deps.HarfBuzz_jll]]
deps = ["Artifacts", "Cairo_jll", "Fontconfig_jll", "FreeType2_jll", "Glib_jll", "Graphite2_jll", "JLLWrappers", "Libdl", "Libffi_jll", "Pkg"]
git-tree-sha1 = "129acf094d168394e80ee1dc4bc06ec835e510a3"
uuid = "2e76f6c2-a576-52d4-95c1-20adfe4de566"
version = "2.8.1+1"
[[deps.Hyperscript]]
deps = ["Test"]
git-tree-sha1 = "8d511d5b81240fc8e6802386302675bdf47737b9"
uuid = "47d2ed2b-36de-50cf-bf87-49c2cf4b8b91"
version = "0.0.4"
[[deps.HypertextLiteral]]
deps = ["Tricks"]
git-tree-sha1 = "c47c5fa4c5308f27ccaac35504858d8914e102f9"
uuid = "ac1192a8-f4b3-4bfe-ba22-af5b92cd3ab2"
version = "0.9.4"
[[deps.IOCapture]]
deps = ["Logging", "Random"]
git-tree-sha1 = "f7be53659ab06ddc986428d3a9dcc95f6fa6705a"
uuid = "b5f81e59-6552-4d32-b1f0-c071b021bf89"
version = "0.2.2"
[[deps.IniFile]]
git-tree-sha1 = "f550e6e32074c939295eb5ea6de31849ac2c9625"
uuid = "83e8ac13-25f8-5344-8a64-a9f2b223428f"
version = "0.5.1"
[[deps.InteractiveUtils]]
deps = ["Markdown"]
uuid = "b77e0a4c-d291-57a0-90e8-8db25a27a240"
[[deps.InverseFunctions]]
deps = ["Test"]
git-tree-sha1 = "336cc738f03e069ef2cac55a104eb823455dca75"
uuid = "3587e190-3f89-42d0-90ee-14403ec27112"
version = "0.1.4"
[[deps.IrrationalConstants]]
git-tree-sha1 = "7fd44fd4ff43fc60815f8e764c0f352b83c49151"
uuid = "92d709cd-6900-40b7-9082-c6be49f344b6"
version = "0.1.1"
[[deps.IterTools]]
git-tree-sha1 = "fa6287a4469f5e048d763df38279ee729fbd44e5"
uuid = "c8e1da08-722c-5040-9ed9-7db0dc04731e"
version = "1.4.0"
[[deps.IteratorInterfaceExtensions]]
git-tree-sha1 = "a3f24677c21f5bbe9d2a714f95dcd58337fb2856"
uuid = "82899510-4779-5014-852e-03e436cf321d"
version = "1.0.0"
[[deps.JLLWrappers]]
deps = ["Preferences"]
git-tree-sha1 = "abc9885a7ca2052a736a600f7fa66209f96506e1"
uuid = "692b3bcd-3c85-4b1f-b108-f13ce0eb3210"
version = "1.4.1"
[[deps.JSON]]
deps = ["Dates", "Mmap", "Parsers", "Unicode"]
git-tree-sha1 = "3c837543ddb02250ef42f4738347454f95079d4e"
uuid = "682c06a0-de6a-54ab-a142-c8b1cf79cde6"
version = "0.21.3"
[[deps.JpegTurbo_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "b53380851c6e6664204efb2e62cd24fa5c47e4ba"
uuid = "aacddb02-875f-59d6-b918-886e6ef4fbf8"
version = "2.1.2+0"
[[deps.LAME_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "f6250b16881adf048549549fba48b1161acdac8c"
uuid = "c1c5ebd0-6772-5130-a774-d5fcae4a789d"
version = "3.100.1+0"
[[deps.LERC_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "bf36f528eec6634efc60d7ec062008f171071434"
uuid = "88015f11-f218-50d7-93a8-a6af411a945d"
version = "3.0.0+1"
[[deps.LZO_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "e5b909bcf985c5e2605737d2ce278ed791b89be6"
uuid = "dd4b983a-f0e5-5f8d-a1b7-129d4a5fb1ac"
version = "2.10.1+0"
[[deps.LaTeXStrings]]
git-tree-sha1 = "f2355693d6778a178ade15952b7ac47a4ff97996"
uuid = "b964fa9f-0449-5b57-a5c2-d3ea65f4040f"
version = "1.3.0"
[[deps.Latexify]]
deps = ["Formatting", "InteractiveUtils", "LaTeXStrings", "MacroTools", "Markdown", "Printf", "Requires"]
git-tree-sha1 = "46a39b9c58749eefb5f2dc1178cb8fab5332b1ab"
uuid = "23fbe1c1-3f47-55db-b15f-69d7ec21a316"
version = "0.15.15"
[[deps.LibCURL]]
deps = ["LibCURL_jll", "MozillaCACerts_jll"]
uuid = "b27032c2-a3e7-50c8-80cd-2d36dbcbfd21"
[[deps.LibCURL_jll]]
deps = ["Artifacts", "LibSSH2_jll", "Libdl", "MbedTLS_jll", "Zlib_jll", "nghttp2_jll"]
uuid = "deac9b47-8bc7-5906-a0fe-35ac56dc84c0"
[[deps.LibGit2]]
deps = ["Base64", "NetworkOptions", "Printf", "SHA"]
uuid = "76f85450-5226-5b5a-8eaa-529ad045b433"
[[deps.LibSSH2_jll]]
deps = ["Artifacts", "Libdl", "MbedTLS_jll"]
uuid = "29816b5a-b9ab-546f-933c-edad1886dfa8"
[[deps.Libdl]]
uuid = "8f399da3-3557-5675-b5ff-fb832c97cbdb"
[[deps.Libffi_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "0b4a5d71f3e5200a7dff793393e09dfc2d874290"
uuid = "e9f186c6-92d2-5b65-8a66-fee21dc1b490"
version = "3.2.2+1"
[[deps.Libgcrypt_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Libgpg_error_jll", "Pkg"]
git-tree-sha1 = "64613c82a59c120435c067c2b809fc61cf5166ae"
uuid = "d4300ac3-e22c-5743-9152-c294e39db1e4"
version = "1.8.7+0"
[[deps.Libglvnd_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libX11_jll", "Xorg_libXext_jll"]
git-tree-sha1 = "7739f837d6447403596a75d19ed01fd08d6f56bf"
uuid = "7e76a0d4-f3c7-5321-8279-8d96eeed0f29"
version = "1.3.0+3"
[[deps.Libgpg_error_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "c333716e46366857753e273ce6a69ee0945a6db9"
uuid = "7add5ba3-2f88-524e-9cd5-f83b8a55f7b8"
version = "1.42.0+0"
[[deps.Libiconv_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "42b62845d70a619f063a7da093d995ec8e15e778"
uuid = "94ce4f54-9a6c-5748-9c1c-f9c7231a4531"
version = "1.16.1+1"
[[deps.Libmount_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "9c30530bf0effd46e15e0fdcf2b8636e78cbbd73"
uuid = "4b2f31a3-9ecc-558c-b454-b3730dcb73e9"
version = "2.35.0+0"
[[deps.Libtiff_jll]]
deps = ["Artifacts", "JLLWrappers", "JpegTurbo_jll", "LERC_jll", "Libdl", "Pkg", "Zlib_jll", "Zstd_jll"]
git-tree-sha1 = "c9551dd26e31ab17b86cbd00c2ede019c08758eb"
uuid = "89763e89-9b03-5906-acba-b20f662cd828"
version = "4.3.0+1"
[[deps.Libuuid_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "7f3efec06033682db852f8b3bc3c1d2b0a0ab066"
uuid = "38a345b3-de98-5d2b-a5d3-14cd9215e700"
version = "2.36.0+0"
[[deps.LinearAlgebra]]
deps = ["Libdl", "libblastrampoline_jll"]
uuid = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
[[deps.LogExpFunctions]]
deps = ["ChainRulesCore", "ChangesOfVariables", "DocStringExtensions", "InverseFunctions", "IrrationalConstants", "LinearAlgebra"]
git-tree-sha1 = "09e4b894ce6a976c354a69041a04748180d43637"
uuid = "2ab3a3ac-af41-5b50-aa03-7779005ae688"
version = "0.3.15"
[[deps.Logging]]
uuid = "56ddb016-857b-54e1-b83d-db4d58db5568"
[[deps.MacroTools]]
deps = ["Markdown", "Random"]
git-tree-sha1 = "3d3e902b31198a27340d0bf00d6ac452866021cf"
uuid = "1914dd2f-81c6-5fcd-8719-6d5c9610ff09"
version = "0.5.9"
[[deps.Markdown]]
deps = ["Base64"]
uuid = "d6f4376e-aef5-505a-96c1-9c027394607a"
[[deps.MbedTLS]]
deps = ["Dates", "MbedTLS_jll", "Random", "Sockets"]
git-tree-sha1 = "1c38e51c3d08ef2278062ebceade0e46cefc96fe"
uuid = "739be429-bea8-5141-9913-cc70e7f3736d"
version = "1.0.3"
[[deps.MbedTLS_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "c8ffd9c3-330d-5841-b78e-0817d7145fa1"
[[deps.Measures]]
git-tree-sha1 = "e498ddeee6f9fdb4551ce855a46f54dbd900245f"
uuid = "442fdcdd-2543-5da2-b0f3-8c86c306513e"
version = "0.3.1"
[[deps.Missings]]
deps = ["DataAPI"]
git-tree-sha1 = "bf210ce90b6c9eed32d25dbcae1ebc565df2687f"
uuid = "e1d29d7a-bbdc-5cf2-9ac0-f12de2c33e28"
version = "1.0.2"
[[deps.Mmap]]
uuid = "a63ad114-7e13-5084-954f-fe012c677804"
[[deps.MozillaCACerts_jll]]
uuid = "14a3606d-f60d-562e-9121-12d972cd8159"
[[deps.MultivariateStats]]
deps = ["Arpack", "LinearAlgebra", "SparseArrays", "Statistics", "StatsAPI", "StatsBase"]
git-tree-sha1 = "7008a3412d823e29d370ddc77411d593bd8a3d03"
uuid = "6f286f6a-111f-5878-ab1e-185364afe411"
version = "0.9.1"
[[deps.NaNMath]]
git-tree-sha1 = "737a5957f387b17e74d4ad2f440eb330b39a62c5"
uuid = "77ba4419-2d1f-58cd-9bb1-8ffee604a2e3"
version = "1.0.0"
[[deps.NetworkOptions]]
uuid = "ca575930-c2e3-43a9-ace4-1e988b2c1908"
[[deps.Ogg_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "887579a3eb005446d514ab7aeac5d1d027658b8f"
uuid = "e7412a2a-1a6e-54c0-be00-318e2571c051"
version = "1.3.5+1"
[[deps.OpenBLAS_jll]]
deps = ["Artifacts", "CompilerSupportLibraries_jll", "Libdl"]
uuid = "4536629a-c528-5b80-bd46-f80d51c5b363"
[[deps.OpenLibm_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "05823500-19ac-5b8b-9628-191a04bc5112"
[[deps.OpenSSL_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "ab05aa4cc89736e95915b01e7279e61b1bfe33b8"
uuid = "458c3c95-2e84-50aa-8efc-19380b2a3a95"
version = "1.1.14+0"
[[deps.OpenSpecFun_jll]]
deps = ["Artifacts", "CompilerSupportLibraries_jll", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "13652491f6856acfd2db29360e1bbcd4565d04f1"
uuid = "efe28fd5-8261-553b-a9e1-b2916fc3738e"
version = "0.5.5+0"
[[deps.Opus_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "51a08fb14ec28da2ec7a927c4337e4332c2a4720"
uuid = "91d4177d-7536-5919-b921-800302f37372"
version = "1.3.2+0"
[[deps.OrderedCollections]]
git-tree-sha1 = "85f8e6578bf1f9ee0d11e7bb1b1456435479d47c"
uuid = "bac558e1-5e72-5ebc-8fee-abe8a469f55d"
version = "1.4.1"
[[deps.PCRE_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "b2a7af664e098055a7529ad1a900ded962bca488"
uuid = "2f80f16e-611a-54ab-bc61-aa92de5b98fc"
version = "8.44.0+0"
[[deps.Parsers]]
deps = ["Dates"]
git-tree-sha1 = "1285416549ccfcdf0c50d4997a94331e88d68413"
uuid = "69de0a69-1ddd-5017-9359-2bf0b02dc9f0"
version = "2.3.1"
[[deps.Pixman_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "b4f5d02549a10e20780a24fce72bea96b6329e29"
uuid = "30392449-352a-5448-841d-b1acce4e97dc"
version = "0.40.1+0"
[[deps.Pkg]]
deps = ["Artifacts", "Dates", "Downloads", "LibGit2", "Libdl", "Logging", "Markdown", "Printf", "REPL", "Random", "SHA", "Serialization", "TOML", "Tar", "UUIDs", "p7zip_jll"]
uuid = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f"
[[deps.PlotThemes]]
deps = ["PlotUtils", "Statistics"]
git-tree-sha1 = "8162b2f8547bc23876edd0c5181b27702ae58dce"
uuid = "ccf2f8ad-2431-5c83-bf29-c5338b663b6a"
version = "3.0.0"
[[deps.PlotUtils]]
deps = ["ColorSchemes", "Colors", "Dates", "Printf", "Random", "Reexport", "Statistics"]
git-tree-sha1 = "bb16469fd5224100e422f0b027d26c5a25de1200"
uuid = "995b91a9-d308-5afd-9ec6-746e21dbc043"
version = "1.2.0"
[[deps.Plots]]
deps = ["Base64", "Contour", "Dates", "Downloads", "FFMPEG", "FixedPointNumbers", "GR", "GeometryBasics", "JSON", "Latexify", "LinearAlgebra", "Measures", "NaNMath", "Pkg", "PlotThemes", "PlotUtils", "Printf", "REPL", "Random", "RecipesBase", "RecipesPipeline", "Reexport", "Requires", "Scratch", "Showoff", "SparseArrays", "Statistics", "StatsBase", "UUIDs", "UnicodeFun", "Unzip"]
git-tree-sha1 = "d457f881ea56bbfa18222642de51e0abf67b9027"
uuid = "91a5bcdd-55d7-5caf-9e0b-520d859cae80"
version = "1.29.0"
[[deps.PlutoUI]]
deps = ["AbstractPlutoDingetjes", "Base64", "ColorTypes", "Dates", "Hyperscript", "HypertextLiteral", "IOCapture", "InteractiveUtils", "JSON", "Logging", "Markdown", "Random", "Reexport", "UUIDs"]
git-tree-sha1 = "8d1f54886b9037091edf146b517989fc4a09efec"
uuid = "7f904dfe-b85e-4ff6-b463-dae2292396a8"
version = "0.7.39"
[[deps.Preferences]]
deps = ["TOML"]
git-tree-sha1 = "47e5f437cc0e7ef2ce8406ce1e7e24d44915f88d"
uuid = "21216c6a-2e73-6563-6e65-726566657250"
version = "1.3.0"
[[deps.Printf]]
deps = ["Unicode"]
uuid = "de0858da-6303-5e67-8744-51eddeeeb8d7"
[[deps.Qt5Base_jll]]
deps = ["Artifacts", "CompilerSupportLibraries_jll", "Fontconfig_jll", "Glib_jll", "JLLWrappers", "Libdl", "Libglvnd_jll", "OpenSSL_jll", "Pkg", "Xorg_libXext_jll", "Xorg_libxcb_jll", "Xorg_xcb_util_image_jll", "Xorg_xcb_util_keysyms_jll", "Xorg_xcb_util_renderutil_jll", "Xorg_xcb_util_wm_jll", "Zlib_jll", "xkbcommon_jll"]
git-tree-sha1 = "c6c0f690d0cc7caddb74cef7aa847b824a16b256"
uuid = "ea2cea3b-5b76-57ae-a6ef-0a8af62496e1"
version = "5.15.3+1"
[[deps.REPL]]
deps = ["InteractiveUtils", "Markdown", "Sockets", "Unicode"]
uuid = "3fa0cd96-eef1-5676-8a61-b3b8758bbffb"
[[deps.Random]]
deps = ["SHA", "Serialization"]
uuid = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
[[deps.RecipesBase]]
git-tree-sha1 = "6bf3f380ff52ce0832ddd3a2a7b9538ed1bcca7d"
uuid = "3cdcf5f2-1ef4-517c-9805-6587b60abb01"
version = "1.2.1"