forked from ikostrikov/pytorch-a2c-ppo-acktr-gail
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
executable file
·225 lines (175 loc) · 8.38 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import copy
import glob
import os
import time
from collections import deque
import gym
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from a2c_ppo_acktr import algo
from a2c_ppo_acktr.arguments import get_args
from a2c_ppo_acktr.envs import make_vec_envs
from a2c_ppo_acktr.model import Policy
from a2c_ppo_acktr.storage import RolloutStorage
from a2c_ppo_acktr.utils import get_vec_normalize, update_linear_schedule
from a2c_ppo_acktr.visualize import visdom_plot
args = get_args()
assert args.algo in ['a2c', 'ppo', 'acktr']
if args.recurrent_policy:
assert args.algo in ['a2c', 'ppo'], \
'Recurrent policy is not implemented for ACKTR'
num_updates = int(args.num_env_steps) // args.num_steps // args.num_processes
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
if args.cuda and torch.cuda.is_available() and args.cuda_deterministic:
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
try:
os.makedirs(args.log_dir)
except OSError:
files = glob.glob(os.path.join(args.log_dir, '*.monitor.csv'))
for f in files:
os.remove(f)
eval_log_dir = args.log_dir + "_eval"
try:
os.makedirs(eval_log_dir)
except OSError:
files = glob.glob(os.path.join(eval_log_dir, '*.monitor.csv'))
for f in files:
os.remove(f)
def main():
torch.set_num_threads(1)
device = torch.device("cuda:0" if args.cuda else "cpu")
if args.vis:
from visdom import Visdom
viz = Visdom(port=args.port)
win = None
envs = make_vec_envs(args.env_name, args.seed, args.num_processes,
args.gamma, args.log_dir, args.add_timestep, device, False)
actor_critic = Policy(envs.observation_space.shape, envs.action_space,
base_kwargs={'recurrent': args.recurrent_policy})
actor_critic.to(device)
if args.algo == 'a2c':
agent = algo.A2C_ACKTR(actor_critic, args.value_loss_coef,
args.entropy_coef, lr=args.lr,
eps=args.eps, alpha=args.alpha,
max_grad_norm=args.max_grad_norm)
elif args.algo == 'ppo':
agent = algo.PPO(actor_critic, args.clip_param, args.ppo_epoch, args.num_mini_batch,
args.value_loss_coef, args.entropy_coef, lr=args.lr,
eps=args.eps,
max_grad_norm=args.max_grad_norm)
elif args.algo == 'acktr':
agent = algo.A2C_ACKTR(actor_critic, args.value_loss_coef,
args.entropy_coef, acktr=True)
rollouts = RolloutStorage(args.num_steps, args.num_processes,
envs.observation_space.shape, envs.action_space,
actor_critic.recurrent_hidden_state_size)
obs = envs.reset()
rollouts.obs[0].copy_(obs)
rollouts.to(device)
episode_rewards = deque(maxlen=10)
start = time.time()
for j in range(num_updates):
if args.use_linear_lr_decay:
# decrease learning rate linearly
if args.algo == "acktr":
# use optimizer's learning rate since it's hard-coded in kfac.py
update_linear_schedule(agent.optimizer, j, num_updates, agent.optimizer.lr)
else:
update_linear_schedule(agent.optimizer, j, num_updates, args.lr)
if args.algo == 'ppo' and args.use_linear_clip_decay:
agent.clip_param = args.clip_param * (1 - j / float(num_updates))
for step in range(args.num_steps):
# Sample actions
with torch.no_grad():
value, action, action_log_prob, recurrent_hidden_states = actor_critic.act(
rollouts.obs[step],
rollouts.recurrent_hidden_states[step],
rollouts.masks[step])
# Obser reward and next obs
obs, reward, done, infos = envs.step(action)
for info in infos:
if 'episode' in info.keys():
episode_rewards.append(info['episode']['r'])
# If done then clean the history of observations.
masks = torch.FloatTensor([[0.0] if done_ else [1.0]
for done_ in done])
rollouts.insert(obs, recurrent_hidden_states, action, action_log_prob, value, reward, masks)
with torch.no_grad():
next_value = actor_critic.get_value(rollouts.obs[-1],
rollouts.recurrent_hidden_states[-1],
rollouts.masks[-1]).detach()
rollouts.compute_returns(next_value, args.use_gae, args.gamma, args.tau)
value_loss, action_loss, dist_entropy = agent.update(rollouts)
rollouts.after_update()
# save for every interval-th episode or for the last epoch
if (j % args.save_interval == 0 or j == num_updates - 1) and args.save_dir != "":
save_path = os.path.join(args.save_dir, args.algo)
try:
os.makedirs(save_path)
except OSError:
pass
# A really ugly way to save a model to CPU
save_model = actor_critic
if args.cuda:
save_model = copy.deepcopy(actor_critic).cpu()
save_model = [save_model,
getattr(get_vec_normalize(envs), 'ob_rms', None)]
torch.save(save_model, os.path.join(save_path, args.env_name + ".pt"))
total_num_steps = (j + 1) * args.num_processes * args.num_steps
if j % args.log_interval == 0 and len(episode_rewards) > 1:
end = time.time()
print("Updates {}, num timesteps {}, FPS {} \n Last {} training episodes: mean/median reward {:.1f}/{:.1f}, min/max reward {:.1f}/{:.1f}\n".
format(j, total_num_steps,
int(total_num_steps / (end - start)),
len(episode_rewards),
np.mean(episode_rewards),
np.median(episode_rewards),
np.min(episode_rewards),
np.max(episode_rewards), dist_entropy,
value_loss, action_loss))
if (args.eval_interval is not None
and len(episode_rewards) > 1
and j % args.eval_interval == 0):
eval_envs = make_vec_envs(
args.env_name, args.seed + args.num_processes, args.num_processes,
args.gamma, eval_log_dir, args.add_timestep, device, True)
vec_norm = get_vec_normalize(eval_envs)
if vec_norm is not None:
vec_norm.eval()
vec_norm.ob_rms = get_vec_normalize(envs).ob_rms
eval_episode_rewards = []
obs = eval_envs.reset()
eval_recurrent_hidden_states = torch.zeros(args.num_processes,
actor_critic.recurrent_hidden_state_size, device=device)
eval_masks = torch.zeros(args.num_processes, 1, device=device)
while len(eval_episode_rewards) < 10:
with torch.no_grad():
_, action, _, eval_recurrent_hidden_states = actor_critic.act(
obs, eval_recurrent_hidden_states, eval_masks, deterministic=True)
# Obser reward and next obs
obs, reward, done, infos = eval_envs.step(action)
eval_masks = torch.tensor([[0.0] if done_ else [1.0]
for done_ in done],
dtype=torch.float32,
device=device)
for info in infos:
if 'episode' in info.keys():
eval_episode_rewards.append(info['episode']['r'])
eval_envs.close()
print(" Evaluation using {} episodes: mean reward {:.5f}\n".
format(len(eval_episode_rewards),
np.mean(eval_episode_rewards)))
if args.vis and j % args.vis_interval == 0:
try:
# Sometimes monitor doesn't properly flush the outputs
win = visdom_plot(viz, win, args.log_dir, args.env_name,
args.algo, args.num_env_steps)
except IOError:
pass
if __name__ == "__main__":
main()