-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEnvironment.py
425 lines (354 loc) · 15.1 KB
/
Environment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
import gym
from gym import spaces
from gym.spaces import Dict
import numpy as np
import itertools
from shapely.geometry import Point, Polygon
import cv2
import pandas as pd
import random
import os
from PIL import Image
from img2vec_pytorch import Img2Vec
from sentence_transformers import SentenceTransformer
from ColorScheme import *
from ConstraintTemplates import TERRAIN_TYPES
from termcolor import colored
from ConstraintType import *
from FacilityPlacementTask import *
from LayoutDesignTaskJsonParser import *
from FacilityPlacementTaskRenderer import FacilityPlacementTaskRenderer
img2vec = Img2Vec()
CONSTRAINT_EMBEDDING_SIZE = 384
MAX_NUM_ARGS = 3
ARG_MASK = '#'
CONSTRAINTS = PopulateAllInstantiations(
ConstraintType.constraint_library.keys(),
TERRAIN_TYPES, ['obj_'+ str(i) for i in range(10)])
#print('constraint instantiations:', CONSTRAINTS)
#print('number of constraint instantiations:', len(CONSTRAINTS))
class TurnBasedFacilityPlacementEnv(gym.Env):
def __init__(self, config):
super().__init__()
self.tasks_folder = config['tasks_folder']
self.num_facilities = config.get("num_facilities", 10)
self.num_terrain_tags = config.get("num_terrain_tags", len(TERRAIN_TYPES) + len(AUX_TERRAIN_TYPES))
self.num_facility_tags = config.get("num_facility_tags", 10)
self.max_dist = config.get("max_dist", 0.1)
self.max_steps = config.get("max_steps", 20 * self.num_facilities)
self.obs_map_shape = config.get("obs_map_shape", (42, 42))
self.vision_only = config.get("vision_only", False)
self.fixed_terrain_vision = config.get("fixed_terrain_vision", True)
self.rwd_full_sat_weight = config.get("rwd_full_sat_weight", 0.8)
self.max_num_constraints = config.get("max_num_constraints", 10)
self.reset_with_init_loc = config.get("init_locs", None)
self.reset_with_fixed_task = config.get("fixed_task", None)
self.facility_locking_states = config.get("facility_locking_states", [0] * self.num_facilities)
self.obs_terrain_cache = None
self.dimension = len(self.obs_map_shape)
self.facility_tags = [[]]
self.constraint_encoder = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
# Action space
self.action_space = spaces.Box(low=-1.0, high=1.0, shape=(self.dimension, ), dtype=np.float32)
print('number of constraint types:', len(ConstraintType.constraint_list))
# Observation space
# Currently only supports single tag for facilities
self.obs_facility_shape = (self.num_facilities, self.dimension + self.num_facility_tags + 1)
self.obs_facility_flattened_shape = self.num_facilities * (self.dimension + self.num_facility_tags + 1)
#self.obs_constraint_shape = (len(ConstraintType.constraint_list) + MAX_NUM_ARGS * self.num_facilities, self.max_num_constraints)
self.obs_constraint_flattend_shape = len(CONSTRAINTS)
if self.vision_only:
#self.obs_vision_shape = tuple(list(self.obs_map_shape) + [self.num_terrain_tags + self.num_facility_tags + 1])
self.obs_vision_shape = tuple(list(self.obs_map_shape) + [3])
#self.obs_vision_shape_self = tuple(list(self.obs_map_shape) + [self.num_terrain_tags + self.num_facility_tags + 1])
#self.observation_space = spaces.Box(low = -1, high = 1, shape = self.obs_vision_shape, dtype=int)
#self.obs_vision_shape = (512, )
self.observation_space = spaces.Tuple((spaces.Box(low = 0.0, high = 1.0, shape = self.obs_vision_shape, dtype=np.float64),
spaces.Box(low = 0, high = 1, shape = (self.obs_constraint_flattend_shape, ), dtype=np.int32)))
else:
self.obs_vision_shape = (512, )
#self.obs_vision_shape = tuple(list(self.obs_map_shape) + [3])
self.observation_space = spaces.Tuple((spaces.Box(low = 0.0, high = 10.0, shape = self.obs_vision_shape, dtype=np.float64),
spaces.Box(low = 0.0, high = 1.0, shape = (self.obs_facility_flattened_shape, ), dtype=np.float64),
spaces.Box(low = 0, high = 1, shape = (self.obs_constraint_flattend_shape, ), dtype=np.int32)))
#self.observation_space = spaces.Tuple(spaces.Box(low = -1.0, high = float(self.num_facility_tags), shape = (self.obs_facility_flattened_shape, ), dtype=np.float64),
# spaces.Box(low = 0, high = 1, shape = (self.obs_constraint_flattend_shape, ), dtype=np.int32))
self.reset()
def step(self, action):
self.move_curr_agent(action)
self.next_step()
obs = self._get_obs(self.currAgent)
reward = self._get_reward()
done = self._get_done()
if done:
print('reward:' + str(reward))
info = {}
return obs, reward, done, info
def reset(self):
# Seeding
np.random.seed(seed=None)
# Initialize
self.step_count = 0
self.currAgent = 0
self.fpTask = None
self._load_task()
print(colored('loaded task: {}'.format(self.fpTask.Task_id), 'green'))
self.obs_terrain_cache = None
self.obs_constraint_cache = None
self.renderer = FacilityPlacementTaskRenderer(self.fpTask)
self._initialize_facility_locs()
# Return initial observation
obs = self._get_obs(self.currAgent)
return obs
def _load_task(self):
if self.reset_with_fixed_task != None:
try:
task_name = self.reset_with_fixed_task.rstrip('.json')
f = os.path.join(self.tasks_folder, self.reset_with_fixed_task)
self.fpTask = FacilityPlacementTask.load_from_json(json.load(open(f, 'r')), task_name)
except Exception:
print('Failed to load specified task. Loading a random task.')
if self.fpTask == None:
# Load a random task
filenames = os.listdir(self.tasks_folder)
task_name = None
while task_name is None or not task_name.endswith('.json'):
task_name = random.choice(filenames)
f = os.path.join(self.tasks_folder, task_name)
self.fpTask = FacilityPlacementTask.load_from_json(json.load(open(f, 'r')), f)
def _initialize_facility_locs(self):
if self.reset_with_init_loc != None:
# Set facilities to be at the specified location
for i in range(len(self.fpTask.Facillities)):
self.fpTask.Facillities[i].Polygon = [[self.reset_with_init_loc[i][0], self.reset_with_init_loc[i][1]]]
else:
# Set facilities to be at random location
for facility in self.fpTask.Facillities:
facility.Polygon = [list(np.random.rand(self.dimension) * self.fpTask.Map_scale)]
def _get_obs(self, facility_id):
local_fov = self.sample_FOV(self.fpTask.Facillities[facility_id])
return local_fov
def _get_done(self):
if self.step_count >= self.max_steps:
return True
else:
return False
def _get_reward(self):
# reward is shared among all agents
sat_val = self.fpTask.evaluate()
if sat_val == 1.0:
return 1.0
else:
return sat_val - 1.0
# full_sat_rwd = 0.0
# if sat_val >= 1.0:
# full_sat_rwd = 1.0
# return sat_val * (1 - self.rwd_full_sat_weight) + full_sat_rwd * self.rwd_full_sat_weight
def render(self, visualize = False, waitKey = 1):
if visualize:
# OpenCV visualization
self.renderer.render_task(waitKey)
self.renderer.render_obs(self.obs_cache, waitKey)
# print positions of all agents
print('step count: ' + str(self.step_count))
print('current agent: ' + self.fpTask.Facillities[self.currAgent].Id)
for facility_id in range(len(self.fpTask.Facillities)):
print('facility ' + self.fpTask.Facillities[facility_id].Id, self.fpTask.Facillities[facility_id].Polygon[0])
def next_step(self):
self.step_count += 1
self.currAgent = self.step_count % self.num_facilities
def move_curr_agent(self, action):
if self.facility_locking_states[self.currAgent] == 1:
return
prev_pos = np.asarray(self.fpTask.Facillities[self.currAgent].Polygon[0])
new_pos = prev_pos + np.asarray(action) * self.fpTask.Map_scale * self.max_dist
# Make sure facilities stay inside canvas
new_pos = [min(max(0.0, new_pos[i]), self.fpTask.Map_scale[i]) for i in range(len(new_pos))]
self.fpTask.Facillities[self.currAgent].Polygon = [new_pos]
def create_terrain_vision(self):
terrain_view = np.zeros(list(self.obs_map_shape) + [3], dtype=np.int32)
for terrain_obj in self.fpTask.Terrain_objects:
for tag in terrain_obj.Tags:
if tag not in TERRAIN_TYPES:
continue
idx = self.fpTask.Terrain_tags.index(tag)
for poly in terrain_obj.Polygon:
pts = np.array([np.asarray(p) / np.asarray(self.fpTask.Map_scale) * np.asarray(self.obs_map_shape) for p in poly], np.int32)
tmp = Polygon(pts)
tmp = tmp.simplify(0)
xx, yy = tmp.exterior.coords.xy
pts = np.array([[int(xx[i]), int(yy[i])] for i in range(len(xx))])
#print('pts:', pts)
terrain_view = cv2.fillPoly(terrain_view, [pts], [x * 255 for x in TerrainColors[idx]])
return terrain_view
def create_constraint_obs(self):
constraint_obs = np.full((self.obs_constraint_flattend_shape, ), 0)
for constraint in self.fpTask.Constraints:
constraintStr = GetConstraintStr(constraint)
constraint_obs[CONSTRAINTS.index(constraintStr)] = 1
#print('constriant ' + str(CONSTRAINTS.index(constraintStr)) + ' added')
#print('constraint obs: ', constraint_obs)
return constraint_obs
def create_facility_vision(self, img, radius = 2):
for facility in self.fpTask.Facillities:
for tag in facility.Tags:
idx = self.fpTask.Facility_tags.index(tag)
position = np.asarray(facility.Polygon[0]) / np.asarray(self.fpTask.Map_scale) * np.asarray(self.obs_map_shape)
position = position.astype(np.int32)
img = cv2.circle(img, position, radius=radius, color=FacilityColor, thickness=-1)
def create_vision_self_indicator(self, img, subject_facility, radius = 3):
position = np.asarray(subject_facility.Polygon[0]) / np.asarray(self.fpTask.Map_scale) * np.asarray(self.obs_map_shape)
position = position.astype(np.int32)
img = cv2.circle(img, position, radius=radius, color=SelfIndicatorColor, thickness=-1)
def create_facility_matrix(self, subject_facility):
obs_facility = np.full(self.obs_facility_shape, 0.0)
facility_cnt = 0
for f in self.fpTask.Facillities:
for i in range(self.dimension):
obs_facility[facility_cnt][i] = float(f.Polygon[0][i]) / float(self.fpTask.Map_scale[i])
# currently only care about the first facility tag
assert(f.Tags[0] in self.fpTask.Facility_tags)
obs_facility[facility_cnt][self.dimension + 1 + self.fpTask.Facility_tags.index(f.Tags[0])] = 1.0
# self indicator
if f == subject_facility:
obs_facility[facility_cnt][self.dimension] = 1.0
else:
obs_facility[facility_cnt][self.dimension] = 0.0
facility_cnt += 1
# Legacy code ----
""" # Information about self
for i in range(self.dimension):
obs_facility[0][i] = float(subject_facility.Polygon[0][i]) / float(self.fpTask.Map_scale[i])
# Self indicator
obs_facility[0][self.dimension] = 1.0
assert(subject_facility.Tags[0] in self.fpTask.Facility_tags)
obs_facility[0][self.dimension + 1] = float(self.fpTask.Facility_tags.index(subject_facility.Tags[0]))
# Information about other facilities
facility_cnt = 1
for f in self.fpTask.Facillities:
if f == subject_facility:
continue
for i in range(self.dimension):
obs_facility[facility_cnt][i] = float(f.Polygon[0][i]) / float(self.fpTask.Map_scale[i])
obs_facility[facility_cnt][self.dimension] = 0.0
# currently only care about the first facility tag
assert(f.Tags[0] in self.fpTask.Facility_tags)
obs_facility[facility_cnt][self.dimension + 1] = float(self.fpTask.Facility_tags.index(f.Tags[0]))
facility_cnt += 1 """
# ---- Legacy code
return obs_facility
def sample_FOV(self, subject_facility):
position = subject_facility.Polygon[0]
if self.obs_terrain_cache is None or self.fixed_terrain_vision == False:
self.obs_terrain_cache = self.create_terrain_vision()
if self.obs_constraint_cache is None:
self.obs_constraint_cache = self.create_constraint_obs()
if self.vision_only:
self.obs_cache = np.array(self.obs_terrain_cache, copy=True)
self.create_facility_vision(self.obs_cache)
self.create_vision_self_indicator(self.obs_cache, subject_facility)
self.obs_cache = np.divide(self.obs_cache, 255)
#obs_img = Image.fromarray(self.obs_cache.astype('uint8'), 'RGB')
#obs_vec = img2vec.get_vec(obs_img)
return (self.obs_cache, self.obs_constraint_cache)
else:
facility_matrix = self.create_facility_matrix(subject_facility)
self.obs_cache = self.obs_terrain_cache
#self.obs_cache = np.divide(self.obs_cache, 255)
terrain_img = Image.fromarray(self.obs_cache.astype('uint8'), 'RGB')
terrain_vec = img2vec.get_vec(terrain_img)
return (terrain_vec, facility_matrix.flatten(), self.obs_constraint_cache)
#return (self.obs_cache, facility_matrix.flatten(), self.obs_constraint_cache)
#return (terrain_vec, facility_matrix.flatten())
def env_creator(env_config):
env = TurnBasedFacilityPlacementEnv({'tasks_folder': env_config['tasks_folder']})
return env
if __name__ == '__main__':
init_locs = [
[
45.601869489933904,
-4.3790577010150533e-47
],
[
100.0,
100.0
],
[
25.41098882779479,
100.0
],
[
0.0,
8.306197734518788
],
[
79.88606895833237,
0.0
],
[
100.0,
0.0
],
[
100.0,
-1.0795210693868056e-78
],
[
0.0,
10.590971442398315
],
[
99.22560239678754,
37.55961306654223
],
[
58.059893032670864,
58.0576677584049
]
]
locking_state = [0, 1, 0, 1, 0, 0, 0, 0, 0, 0]
tasks_folder = 'tasksets/generated_tasks_10_terrain_15_constraints/'
env = TurnBasedFacilityPlacementEnv({'tasks_folder': tasks_folder,
'facility_locking_states': locking_state})
sample = env.observation_space.sample()
print('observation shape:', sample[0].shape, sample[1].shape)
#print('Sample observation:', sample)
#terrain_obs, facility_obs = sample
init_obs = env.reset()
print('initial observation:', init_obs)
print('observation shape:', init_obs[0].shape, init_obs[1].shape, init_obs[2].shape)
#print('observation dtype:', init_obs[0].dtype, init_obs[1].dtype)
env.render(True, 0)
actions = [0.1, 0.1]
state, reward, done, info = env.step(actions)
print('reward:', reward)
#print('observation:', state)
env.render(True, 0)
actions = [0.1, 0.1]
state, reward, done, info = env.step(actions)
print('reward:', reward)
#print('observation:', state)
env.render(True, 0)
actions = [0.1, 0.1]
state, reward, done, info = env.step(actions)
print('reward:', reward)
#print('observation:', state)
env.render(True, 0)
actions = [0.1, 0.1]
state, reward, done, info = env.step(actions)
print('reward:', reward)
#print('observation:', state)
env.render(True, 0)
actions = [0.1, 0.1]
state, reward, done, info = env.step(actions)
print('reward:', reward)
#print('observation:', state)
env.render(True, 0)
#actions = [-0.3, -0.2]
#state, reward, done, info = env.step(actions)
#print('reward:', reward)
#print('observation:', state)
#env.render(True, 0)
#for i in range(10):
# print('step ' + str(i))
# state, reward, done, info = env.step(action