-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_gym.py
86 lines (64 loc) · 2.33 KB
/
run_gym.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
from Environment import TurnBasedFacilityPlacementEnv
from FacilityPlacementTask import FacilityPlacementTask
from SpatialObject import SpatialObject
from ray.rllib.utils.filter import MeanStdFilter
from ConstraintTemplates import *
from ConstraintType import *
from gym import spaces
import pandas as pd
import json
import os
from complex_input_net import ComplexInputNetworkADSK
import ray
from ray import tune
from ray.tune.logger import pretty_print
from ray.tune.registry import register_env
from ray.rllib.policy.policy import PolicySpec
from ray.rllib.env.multi_agent_env import MultiAgentEnv
from ray.rllib.algorithms.ppo import PPOConfig
checkpoint_path = '/Users/wangyi/Workspace/ray_results/facility_placement/full_scale_samples/facility-placement-ppo-train/PPO_FACILITY_PlACEMENT_7d736_00000_0_2023-03-29_12-54-18/checkpoint_000270'
taskset_path = 'tasksets/full_scale_samples'
# Config is an object instead of a dictionary since Ray version >= 1.13.
config = PPOConfig()
config.framework(
framework="torch",
)
## Point the PPO to our new environment class.
config.environment(
env=TurnBasedFacilityPlacementEnv,
env_config={'tasks_folder': taskset_path},
)
config.model["fcnet_hiddens"]=[512, 512]
config.in_evaluation = True
ppo = config.build()
ppo.config['in_evaluation'] = True
ppo.restore(checkpoint_path)
model = ppo.get_policy().model
#print(model)
env = TurnBasedFacilityPlacementEnv({'tasks_folder': taskset_path})
num_tries = 1000
success_count = 0
satisfaction_count = 0
for i in range(num_tries):
print('episode ' + str(i))
state = env.reset()
done = False
cumulative_reward = 0
#env.render(True, 1)
while not done:
action = ppo.compute_action(state)
state, reward, done, _ = env.step(action)
print('action:', action)
#env.render(True)
if reward >= 1.0:
success_count += 1
break
cumulative_reward += reward
print('reward:', reward)
satisfaction_count += env.fpTask.compute_sat_percentage()
print('cumulated reward:', cumulative_reward)
print('--------')
#env.render(True, 1)
print(str(success_count) + ' success out of ' + str(i+1) + ' tries')
print('Average satisfaction percentage:', satisfaction_count / float(i+1))
print(str(success_count) + ' success out of ' + str(num_tries) + ' tries')