-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
344 lines (305 loc) · 11.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
#!/usr/bin/env python
import argparse
import os
from pathlib import Path
import yaml
import ray
from ray.tune.experiment.config_parser import _make_parser
from ray.tune.result import DEFAULT_RESULTS_DIR
from ray.tune.resources import resources_to_json
from ray.tune.tune import run_experiments
from ray.tune.schedulers import create_scheduler
from ray.rllib.utils.deprecation import deprecation_warning
from ray.rllib.utils.framework import try_import_tf, try_import_torch
from ray.tune.registry import register_env, register_trainable
# from complex_input_net import ComplexInputNetworkADSK
from Environment import env_creator
# Try to import both backends for flag checking/warnings.
tf1, tf, tfv = try_import_tf()
torch, _ = try_import_torch()
EXAMPLE_USAGE = """
Training example via RLlib CLI:
rllib train --run DQN --env CartPole-v0
Grid search example via RLlib CLI:
rllib train -f tuned_examples/cartpole-ppo-grid-search-example.yaml
Grid search example via executable:
./train.py -f tuned_examples/cartpole-ppo-grid-search-example.yaml
Note that -f overrides all other trial-specific command-line options.
"""
def create_parser(parser_creator=None):
parser = _make_parser(
parser_creator=parser_creator,
formatter_class=argparse.RawDescriptionHelpFormatter,
description="Train a reinforcement learning agent.",
epilog=EXAMPLE_USAGE,
)
# See also the base parser definition in ray/tune/experiment/__config_parser.py
parser.add_argument(
"--ray-address",
default=None,
type=str,
help="Connect to an existing Ray cluster at this address instead "
"of starting a new one.",
)
parser.add_argument(
"--ray-ui", action="store_true", help="Whether to enable the Ray web UI."
)
# Deprecated: Use --ray-ui, instead.
parser.add_argument(
"--no-ray-ui",
action="store_true",
help="Deprecated! Ray UI is disabled by default now. "
"Use `--ray-ui` to enable.",
)
parser.add_argument(
"--local-mode",
action="store_true",
help="Run ray in local mode for easier debugging.",
)
parser.add_argument(
"--ray-num-cpus",
default=None,
type=int,
help="--num-cpus to use if starting a new cluster.",
)
parser.add_argument(
"--ray-num-gpus",
default=None,
type=int,
help="--num-gpus to use if starting a new cluster.",
)
parser.add_argument(
"--ray-num-nodes",
default=None,
type=int,
help="Emulate multiple cluster nodes for debugging.",
)
parser.add_argument(
"--ray-object-store-memory",
default=None,
type=int,
help="--object-store-memory to use if starting a new cluster.",
)
parser.add_argument(
"--experiment-name",
default="default",
type=str,
help="Name of the subdirectory under `local_dir` to put results in.",
)
parser.add_argument(
"--local-dir",
default=DEFAULT_RESULTS_DIR,
type=str,
help="Local dir to save training results to. Defaults to '{}'.".format(
DEFAULT_RESULTS_DIR
),
)
parser.add_argument(
"--upload-dir",
default="",
type=str,
help="Optional URI to sync training results to (e.g. s3://bucket).",
)
# This will override any framework setting found in a yaml file.
parser.add_argument(
"--framework",
choices=["tf", "tf2", "tfe", "torch"],
default=None,
help="The DL framework specifier.",
)
parser.add_argument(
"-v", action="store_true", help="Whether to use INFO level logging."
)
parser.add_argument(
"-vv", action="store_true", help="Whether to use DEBUG level logging."
)
parser.add_argument(
"--resume",
action="store_true",
help="Whether to attempt to resume previous Tune experiments.",
)
parser.add_argument(
"--trace",
action="store_true",
help="Whether to attempt to enable tracing for eager mode.",
)
parser.add_argument(
"--env", default=None, type=str, help="The gym environment to use."
)
parser.add_argument(
"-f",
"--config-file",
default=None,
type=str,
help="If specified, use config options from this file. Note that this "
"overrides any trial-specific options set via flags above.",
)
# Obsolete: Use --framework=torch|tf2|tfe instead!
parser.add_argument(
"--torch",
action="store_true",
help="Whether to use PyTorch (instead of tf) as the DL framework.",
)
parser.add_argument(
"--eager",
action="store_true",
help="Whether to attempt to enable TF eager execution.",
)
return parser
def run(args, parser):
if args.config_file:
with open(args.config_file) as f:
experiments = yaml.safe_load(f)
else:
# Note: keep this in sync with tune/experiment/__config_parser.py
experiments = {
args.experiment_name: { # i.e. log to ~/ray_results/default
"run": args.run,
"checkpoint_freq": args.checkpoint_freq,
"checkpoinkt_at_end": args.checkpoint_at_end,
"keep_checkpoints_num": args.keep_checkpoints_num,
"checkpoint_score_attr": args.checkpoint_score_attr,
"local_dir": args.local_dir,
"resources_per_trial": (
args.resources_per_trial
and resources_to_json(args.resources_per_trial)
),
"stop": args.stop,
"config": dict(args.config, env=args.env),
"restore": args.restore,
"num_samples": args.num_samples,
"sync_config": {
"upload_dir": args.upload_dir,
},
}
}
# Ray UI.
if args.no_ray_ui:
deprecation_warning(old="--no-ray-ui", new="--ray-ui", error=False)
args.ray_ui = False
verbose = 1
for exp in experiments.values():
# Bazel makes it hard to find files specified in `args` (and `data`).
# Look for them here.
# NOTE: Some of our yaml files don't have a `config` section.
input_ = exp.get("config", {}).get("input")
if input_ and input_ != "sampler":
# This script runs in the ray/rllib dir.
rllib_dir = Path(__file__).parent
def patch_path(path):
if isinstance(path, list):
return [patch_path(i) for i in path]
elif isinstance(path, dict):
return {patch_path(k): patch_path(v) for k, v in path.items()}
elif isinstance(path, str):
if os.path.exists(path):
return path
else:
abs_path = str(rllib_dir.absolute().joinpath(path))
return abs_path if os.path.exists(abs_path) else path
else:
return path
exp["config"]["input"] = patch_path(input_)
if not exp.get("run"):
parser.error("the following arguments are required: --run")
if not exp.get("env") and not exp.get("config", {}).get("env"):
parser.error("the following arguments are required: --env")
if args.torch:
deprecation_warning("--torch", "--framework=torch")
exp["config"]["framework"] = "torch"
elif args.eager:
deprecation_warning("--eager", "--framework=[tf2|tfe]")
exp["config"]["framework"] = "tfe"
elif args.framework is not None:
exp["config"]["framework"] = args.framework
if args.trace:
if exp["config"]["framework"] not in ["tf2", "tfe"]:
raise ValueError("Must enable --eager to enable tracing.")
exp["config"]["eager_tracing"] = True
if args.v:
exp["config"]["log_level"] = "INFO"
verbose = 3 # Print details on trial result
if args.vv:
exp["config"]["log_level"] = "DEBUG"
verbose = 3 # Print details on trial result
# Facility placement task-specific parameters
# Comment out below if using vision only
#exp["config"]['preprocessor_pref'] = None
#exp["config"]['_disable_preprocessor_api'] = True
#exp["config"]['model'] = {"custom_model": ComplexInputNetworkADSK,
# "custom_model_config": {}}
if args.ray_num_nodes:
# Import this only here so that train.py also works with
# older versions (and user doesn't use `--ray-num-nodes`).
from ray.cluster_utils import Cluster
cluster = Cluster()
for _ in range(args.ray_num_nodes):
cluster.add_node(
num_cpus=args.ray_num_cpus or 1,
num_gpus=args.ray_num_gpus or 0,
object_store_memory=args.ray_object_store_memory,
)
ray.init(address=cluster.address)
else:
ray.init(
include_dashboard=args.ray_ui,
address=args.ray_address,
object_store_memory=args.ray_object_store_memory,
num_cpus=args.ray_num_cpus,
num_gpus=args.ray_num_gpus,
local_mode=args.local_mode,
)
''' using PBT to fine tune hyper-parameters '''
# 1. Postprocess the perturbed config to ensure it's still valid
def explore(config):
# ensure we collect enough timesteps to do sgd
if config["train_batch_size"] < config["sgd_minibatch_size"] * 2:
config["train_batch_size"] = config["sgd_minibatch_size"] * 2
# ensure we run at least one sgd iter
if config["num_sgd_iter"] < 1:
config["num_sgd_iter"] = 1
return config
# 2. config pbt
from ray.tune.schedulers import PopulationBasedTraining
import random
pbt = PopulationBasedTraining(
time_attr="time_total_s",
metric="episode_reward_mean",
mode="max",
perturbation_interval=120,
resample_probability=0.25,
# Specifies the mutations of these hyperparams
hyperparam_mutations={
"lambda": lambda: random.uniform(0.9, 1.0),
"clip_param": lambda: random.uniform(0.01, 0.5),
"lr": [1e-3, 5e-4, 1e-4, 5e-5, 1e-5],
"num_sgd_iter": lambda: random.randint(1, 30),
"sgd_minibatch_size": lambda: random.randint(128, 16384),
"train_batch_size": lambda: random.randint(2000, 160000),
},
custom_explore_fn=explore,
)
run_experiments(
experiments,
# scheduler=create_scheduler(args.scheduler, **args.scheduler_config),
scheduler = pbt,
resume=args.resume,
verbose=verbose,
concurrent=True,
)
ray.shutdown()
class PolicyMappingFn:
"""Example for a callable class specifyable in yaml files as `policy_mapping_fn`.
See for example:
ray/rllib/tuned_examples/alpha_star/multi-agent-cartpole-alpha-star.yaml
"""
def __call__(self, agent_id, episode, worker, **kwargs):
return "main"
def main():
parser = create_parser()
args = parser.parse_args()
# register customized envs
register_env("FACILITY_PlACEMENT", env_creator)
run(args, parser)
if __name__ == "__main__":
main()