Plugins can either be one of the aztk
supported plugins or the path to a local file.
AZTK ships with a library of default plugins that enable auxiliary services to use with your Spark cluster.
Currently the following plugins are supported:
- JupyterLab
- Jupyter
- HDFS
- RStudioServer
- TensorflowOnSpark
- OpenBLAS
- mvBLAS
If you are using the aztk
CLI and wish to enable a supported plugin, you need to update you .aztk/cluster.yaml
configuration file.
Add or uncomment the plugins
section and set the plugins you desire to enable as follows:
plugins:
- name: jupyterlab
- name: jupyter
- name: hdfs
- name: spark_ui_proxy
- name: rsutio_server
args:
version: "1.1.383"
If you are using the aztk
SDK and wish to enable a supported plugin, you need to import the necessary plugins from the aztk.spark.models.plugin
module and add them to your ClusterConfiguration object's plugin list:
from aztk.spark.models.plugins import RStudioServerPlugin, HDFSPlugin
cluster_config = ClusterConfiguration(
...# Other config,
plugins=[
JupyterPlugin(),
HDFSPlugin(),
]
)
This allows you to run your custom code on the cluster
plugins:
- script: path/to/my/script.sh
- name: friendly-name
script: path/to/my-other/script.sh
target: host
target_role: all-nodes
script
: Required Path to the script you want to runname
: Optional Friendly name. By default will be the name of the script filetarget
: Optional Target on where to run the plugin(Default:spark-container
). Can bespark-container
orhost
target_role
: Optional What should be the role of the node where this script run(Default:master
). Can bemaster
,worker
orall-nodes