-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerator_model_base_class.py
68 lines (50 loc) · 2.58 KB
/
generator_model_base_class.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import dolfinx
from mpi4py import MPI
from nibelungenbruecke.scripts.utilities.checks import assert_path_exists
from nibelungenbruecke.scripts.utilities.loaders import load_sensors
from nibelungenbruecke.scripts.utilities.offloaders import offload_sensors
class GeneratorModel:
''' Base class for a generator of synthetic data from a model.'''
def __init__(self, model_path:str, sensor_positions_path: str, model_parameters: dict, output_parameters: dict = None):
assert_path_exists(model_path)
self.model_path = model_path
assert_path_exists(sensor_positions_path)
self.sensor_positions = sensor_positions_path
default_parameters = self._get_default_parameters()
for key, value in default_parameters.items():
if key not in model_parameters:
model_parameters[key] = value
self.model_parameters = model_parameters
self.output_parameters = output_parameters
def Generate(self):
''' Generate the data from the start'''
self.LoadGeometry()
self.GenerateModel()
self.GenerateData()
def LoadGeometry(self):
''' Load the meshed geometry from a .msh file'''
# Translate mesh from gmsh to dolfinx
self.mesh, cell_tags, facet_tags = dolfinx.io.gmshio.read_from_msh(self.model_path, MPI.COMM_WORLD, 0)
# self.mesh = dolfinx.mesh.create_mesh(MPI.COMM_WORLD, mesh.points, mesh.cells)
def GenerateModel(self):
''' Generate the FEM model.'''
raise NotImplementedError("GenerateModel should be implemented")
def GenerateData(self):
''' Run the FEM model and generate the data'''
raise NotImplementedError("GenerateData should be implemented")
@staticmethod
def sensor_offloader_wrapper(generate_data_func):
''' Wrapper to simplify sensor offloading'''
def wrapper(self, *args, **kwargs):
generate_data_func(self, *args, **kwargs)
# Store the value at the sensors
sensors = load_sensors(self.sensor_positions)
for sensor in sensors:
sensor.measure(self)
# Output the virtual measurements to a file
offload_sensors(sensors, self.output_parameters["output_path"]+"/"+self.model_parameters["model_name"], self.output_parameters["output_format"])
return wrapper
@staticmethod
def _get_default_parameters():
''' Get the default parameters for the model'''
raise NotImplementedError("_get_default_parameters should be implemented")