-
Notifications
You must be signed in to change notification settings - Fork 176
/
Copy pathutils.py
204 lines (163 loc) · 6.24 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# -*-coding:utf-8-*-
import logging
import math
import os
import shutil
import numpy as np
import torch
import torchvision
import torchvision.transforms as transforms
class Cutout(object):
def __init__(self, n_holes, length):
self.n_holes = n_holes
self.length = length
def __call__(self, img):
h = img.size(1)
w = img.size(2)
mask = np.ones((h, w), np.float32)
for n in range(self.n_holes):
y = np.random.randint(h)
x = np.random.randint(w)
y1 = np.clip(y - self.length // 2, 0, h)
y2 = np.clip(y + self.length // 2, 0, h)
x1 = np.clip(x - self.length // 2, 0, w)
x2 = np.clip(x + self.length // 2, 0, w)
mask[y1:y2, x1:x2] = 0.0
mask = torch.from_numpy(mask)
mask = mask.expand_as(img)
img = img * mask
return img
class Logger(object):
def __init__(self, log_file_name, log_level, logger_name):
self.__logger = logging.getLogger(logger_name)
self.__logger.setLevel(log_level)
file_handler = logging.FileHandler(log_file_name)
console_handler = logging.StreamHandler()
formatter = logging.Formatter(
"[%(asctime)s] - [%(filename)s line:%(lineno)3d] : %(message)s"
)
file_handler.setFormatter(formatter)
console_handler.setFormatter(formatter)
self.__logger.addHandler(file_handler)
self.__logger.addHandler(console_handler)
def get_log(self):
return self.__logger
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def data_augmentation(config, is_train=True):
aug = []
if is_train:
# random crop
if config.augmentation.random_crop:
aug.append(transforms.RandomCrop(config.input_size, padding=4))
# horizontal filp
if config.augmentation.random_horizontal_filp:
aug.append(transforms.RandomHorizontalFlip())
aug.append(transforms.ToTensor())
# normalize [- mean / std]
if config.augmentation.normalize:
if config.dataset == "cifar10":
aug.append(
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
)
else:
aug.append(
transforms.Normalize((0.5071, 0.4867, 0.4408), (0.2675, 0.2565, 0.2761))
)
if is_train and config.augmentation.cutout:
# cutout
aug.append(
Cutout(n_holes=config.augmentation.holes, length=config.augmentation.length)
)
return aug
def save_checkpoint(state, is_best, filename):
torch.save(state, filename + ".pth.tar")
if is_best:
shutil.copyfile(filename + ".pth.tar", filename + "_best.pth.tar")
def load_checkpoint(path, model, optimizer=None):
if os.path.isfile(path):
logging.info("=== loading checkpoint '{}' ===".format(path))
checkpoint = torch.load(path)
model.load_state_dict(checkpoint["state_dict"], strict=False)
if optimizer is not None:
best_prec = checkpoint["best_prec"]
last_epoch = checkpoint["last_epoch"]
optimizer.load_state_dict(checkpoint["optimizer"])
logging.info(
"=== done. also loaded optimizer from "
+ "checkpoint '{}' (epoch {}) ===".format(path, last_epoch + 1)
)
return best_prec, last_epoch
def get_data_loader(transform_train, transform_test, config):
assert config.dataset == "cifar10" or config.dataset == "cifar100"
if config.dataset == "cifar10":
trainset = torchvision.datasets.CIFAR10(
root=config.data_path, train=True, download=True, transform=transform_train
)
testset = torchvision.datasets.CIFAR10(
root=config.data_path, train=False, download=True, transform=transform_test
)
else:
trainset = torchvision.datasets.CIFAR100(
root=config.data_path, train=True, download=True, transform=transform_train
)
testset = torchvision.datasets.CIFAR100(
root=config.data_path, train=False, download=True, transform=transform_test
)
train_loader = torch.utils.data.DataLoader(
trainset, batch_size=config.batch_size, shuffle=True, num_workers=config.workers
)
test_loader = torch.utils.data.DataLoader(
testset, batch_size=config.test_batch, shuffle=False, num_workers=config.workers
)
return train_loader, test_loader
def mixup_data(x, y, alpha, device):
"""Returns mixed inputs, pairs of targets, and lambda"""
if alpha > 0:
lam = np.random.beta(alpha, alpha)
else:
lam = 1
batch_size = x.size()[0]
index = torch.randperm(batch_size).to(device)
mixed_x = lam * x + (1 - lam) * x[index, :]
y_a, y_b = y, y[index]
return mixed_x, y_a, y_b, lam
def mixup_criterion(criterion, pred, y_a, y_b, lam):
return lam * criterion(pred, y_a) + (1 - lam) * criterion(pred, y_b)
def get_current_lr(optimizer):
for param_group in optimizer.param_groups:
return param_group["lr"]
def adjust_learning_rate(optimizer, epoch, config):
lr = get_current_lr(optimizer)
if config.lr_scheduler.type == "STEP":
if epoch in config.lr_scheduler.lr_epochs:
lr *= config.lr_scheduler.lr_mults
elif config.lr_scheduler.type == "COSINE":
ratio = epoch / config.epochs
lr = (
config.lr_scheduler.min_lr
+ (config.lr_scheduler.base_lr - config.lr_scheduler.min_lr)
* (1.0 + math.cos(math.pi * ratio))
/ 2.0
)
elif config.lr_scheduler.type == "HTD":
ratio = epoch / config.epochs
lr = (
config.lr_scheduler.min_lr
+ (config.lr_scheduler.base_lr - config.lr_scheduler.min_lr)
* (
1.0
- math.tanh(
config.lr_scheduler.lower_bound
+ (
config.lr_scheduler.upper_bound
- config.lr_scheduler.lower_bound
)
* ratio
)
)
/ 2.0
)
for param_group in optimizer.param_groups:
param_group["lr"] = lr
return lr