Package 'kimma'

September 18, 2021

Type Package

Index

Title Kinship In Mixed Model Analysis of RNA-seq
Version 1.0.0
Author Kim Dill-McFarland
Maintainer Kim Dill-McFarland <kadm@uw.edu></kadm@uw.edu>
Description Linear mixed effects models with pairwise kinship for RNA-seq data.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
biocViews
Imports broom, car, coxme, data.table, doParallel, dplyr, edgeR, emmeans, forcats, foreach, ggplot2, limma, lme4, magrittr, readr, stats, stringr, tibble, tidyr, tidyselect
RoxygenNote 7.1.1
Depends R (>= 2.10)
R topics documented:
example.dat
example.kin
example.voom
extract_lmFit
kmFit
summarise_kmFit
summarise_lmFit

10

2 example.dat

example.dat

kimma example DGEList.

Description

An edgeR DGEList data set containing unnormalized RNA-seq counts. RNA-seq of human dendritic cells cultured with and without virus. Samples from 3 donors and a random subset of 1000 genes were selected. Counts are unnormalized.

Usage

example.dat

Format

Formal class 'DGEList' [package "edgeR"] with 1 slot:

1. counts A matrix with 1000 rows and 12 columns

rownames character. ENSEMBL gene ID.

lib1 integer. Counts in library 1.

lib2 integer. Counts in library 2.

lib3 integer. Counts in library 3.

lib4 integer. Counts in library 4.

lib5 integer. Counts in library 5.

lib6 integer. Counts in library 6.

lib7 integer. Counts in library 7.

lib8 integer. Counts in library 8.

lib9 integer. Counts in library 9.

lib10 integer. Counts in library 10.

lib11 integer. Counts in library 11.

lib12 integer. Counts in library 12.

2. samples A data frame with 12 rows and 9 columns

group factor. No grouping was provided. All = 1.

lib.size numeric. Total library size for this 1000 gene subset.

norm.factors numeric. Normalizatin factors. No normalization was completed. All = 1.

libID character. Unique library ID. Matches column names in counts.

donorID character. Donor ID.

median_cv_coverage numeric. Median coefficient of variation of coverage. Quality metric for sequencing libraries calculated from original full data set.

virus Factor. Media samples with no virus ("none") vs virus-infected samples ("HRV"). **asthma** Character. Asthma vs healthy.

3. genes A data frame with 1000 rows and 5 columns

hgnc_symbol character. Current approved HGNC symbol.

Previous symbols character. Previous HGNC symbols.

Alias symbols character. Alias HGNC symbols.

gene_biotype character. Gene product type. All = protein-coding.

geneName character. ENSEMBL gene ID. Matches row names in counts.

example.kin 3

Source

```
https://github.com/altman-lab/P259_pDC_public
```

References

Dill-McFarland et al. 2021. Eosinophil-mediated suppression and Anti-IL-5 enhancement of plasmacytoid dendritic cell interferon responses in asthma. J Allergy Clin Immunol. In revision

example.kin

kimma example kinship.

Description

Matrix of pairwise kinship values between donor 1,2,3. Values are dummy data with 1 for self comparison, 0.5 for siblings, and 0.1 for unrelated.

Usage

```
example.kin
```

Format

A matrix with 6 rows and 6 variables:

rowname Donor ID. Same as column names **donor1** numeric kinship (0-1) with donor 1 **donor2** numeric kinship (0-1) with donor 2 **donor3** numeric kinship (0-1) with donor 3 **donor4** numeric kinship (0-1) with donor 4 **donor5** numeric kinship (0-1) with donor 5 **donor6** numeric kinship (0-1) with donor 6

example.voom

kimma example EList.

Description

A limma EList data set containing normalized log2 RNA-seq counts. RNA-seq of human dendritic cells cultured with and without virus. Samples from 3 donors and a random subset of 1000 genes were selected. Counts are TMM normalized log2 counts per million (CPM).

Usage

```
example.voom
```

4 example.voom

Format

Formal class 'EList' [package "limma"] with 1 slot:

1. genes A data frame with 1000 rows and 5 columns

hgnc symbol character. Current approved HGNC symbol.

Previous symbols character. Previous HGNC symbols.

Alias symbols character. Alias HGNC symbols.

gene_biotype character. Gene product type. All = protein-coding.

geneName character. ENSEMBL gene ID. Matches row names in E.

2. targets A data frame with 12 rows and 8 columns

group factor. No grouping was provided. All = 1.

lib.size numeric. Total library size for this 1000 gene subset.

norm.factors numeric. TMM normalizatin factors.

libID character. Unique library ID. Matches column names in E.

donorID character. Donor ID.

median_cv_coverage numeric. Median coefficient of variation of coverage. Quality metric for sequencing libraries calculated from original full data set.

virus Factor. Media samples with no virus ("none") vs virus-infected samples ("HRV"). **asthma** Character. Asthma vs healthy.

3. E A matrix with 1000 rows and 12 columns

rownames character. ENSEMBL gene ID.

- lib1 numeric. log2 CPM in library 1.
- lib2 numeric. log2 CPM in library 2.
- lib3 numeric. log2 CPM in library 3.
- lib4 numeric. log2 CPM in library 4.
- lib5 numeric. log2 CPM in library 5.
- **lib6** numeric. log2 CPM in library 6.
- **lib7** numeric. log2 CPM in library 7.
- **lib8** numeric. log2 CPM in library 8. **lib9** numeric. log2 CPM in library 9.
- **lib10** numeric. log2 CPM in library 10.
- lib11 numeric. log2 CPM in library 11.
- lib12 numeric. log2 CPM in library 12.
- 4. weights A matrix with 1000 rows and 6 columns
 - 1 numeric. limma gene weights for library 1.
 - 2 numeric. limma gene weights for library 2.
 - 3 numeric. limma gene weights for library 3.
 - 4 numeric. limma gene weights for library 4.
 - 5 numeric. limma gene weights for library 5.
 - **6** numeric. limma gene weights for library 6.
- 5. design A matrix with 6 rows and 1 column

GrandMean numeric. limma default design matrix.

Source

https://github.com/altman-lab/P259_pDC_public

extract_lmFit 5

References

Dill-McFarland et al. 2021. Eosinophil-mediated suppression and Anti-IL-5 enhancement of plasmacytoid dendritic cell interferon responses in asthma. J Allergy Clin Immunol. In revision

extract_lmFit

Extract lmFit model results

Description

Extract model fit and significance for all individual variables and/or contrasts in a limma model

Usage

```
extract_lmFit(
  design,
  fit,
  contrast.mat = NULL,
  dat.genes = NULL,
  name.genes = "geneName"
)
```

Arguments

```
design model matrix output by model.matrix()

fit MArrayLM model fit output by limma::eBayes()

contrast.mat contrast matrix output by limma::makeContrasts()

dat.genes data frame with additional gene annotations. Optional.

name.genes character for variable name in dat.genes that matches gene names in fit
```

Value

Data frame with model fit and significance for all variable and genes. Format as in limma::topTable()

6 kmFit

```
## Get contrast results
fdr <- extract_lmFit(design = design, fit = fit, contrast.mat = contrast.mat)</pre>
```

kmFit

Linear mixed effects models with kinship for RNA-seq

Description

Run lmekin and corresponding lm or lme without kinship of gene expression in RNA-seq data

Usage

```
kmFit(
  dat = NULL,
  kin = NULL,
  patientID = "ptID",
  libraryID = "libID",
  counts = NULL,
  meta = NULL,
  genes = NULL,
  subset.var = NULL,
  subset.lvl = NULL,
  subset.genes = NULL,
  model,
  run.lm = FALSE,
  run.lme = FALSE,
  run.lmekin = FALSE,
  run.contrast = FALSE,
  contrast.var = NULL,
  processors = NULL,
  p.method = "BH"
)
```

Arguments

dat	EList object output by voom(). Contains counts (dat\$E), meta (dat\$targets), and genes (dat\$genes).
kin	Matrix with pairwise kinship values between individuals. Must be numeric with rownames.
patientID	Character of variable name to match dat\$targets to kinship row and column names.
libraryID	Character of variable name to match dat\$targets to dat\$E colnames
counts	Matrix of normalized expression. Rows are genes, columns are libraries.
meta	Matrix or data frame of sample and individual metadata.
genes	Matrix or data frame of gene metadata.
subset.var	Character list of variable name(s) to filter data by.
subset.lvl	Character list of variable value(s) or level(s) to filter data to. Must match order of subset.var

kmFit 7

subset.genes	Character vector of genes to include in models.
model	Character vector of model starting with \sim Should include (1lpatientID) if mixed effects will be run
run.lm	Logical if should run lm model without kinship
run.lme	Logical if should run lme model without kinship
run.lmekin	Logical if should run lmekin model with kinship
run.contrast	Logical if should run pairwise contrasts. If no matrix provided, all possible pairwise comparisons are completed.
contrast.var	Character vector of variable in model to run contrasts of. Interaction terms must be specified as "var1:var2". If NULL (default), all contrasts for all variables in the model are run
processors	Numeric processors to run in parallel. Default is 2 less than the total available
p.method	Character of FDR adjustment method. Values as in p.adjust()

Value

Dataframe with model fit and significance for each gene

```
# All samples and all genes
# Not run
# kmFit(dat = example.voom,
        patientID = "donorID", libraryID = "libID",
#
        kin = example.kin, run.lmekin = TRUE,
#
        model = "~ virus + (1|donorID)", processors = 6)
# Subset samples and genes
kmFit(dat = example.voom,
      patientID = "donorID", libraryID = "libID",
      run.lme = TRUE,
      subset.var = list("asthma"), subset.lvl = list(c("asthma")),
      subset.genes = c("ENSG00000250479", "ENSG00000250510", "ENSG00000255823"),
      model = "~ virus + (1|donorID)")
# Pairwise contrasts
kmFit(dat = example.voom,
      patientID = "donorID", libraryID = "libID",
      run.lme = TRUE, run.contrast = TRUE,
      subset.genes = c("ENSG00000250479","ENSG00000250510","ENSG00000255823"),
      model = "~ virus+asthma * median_cv_coverage + (1|donorID)",
      contrast.var=c("virus", "asthma:median_cv_coverage"))
kmFit(dat = example.voom, kin = example.kin,
      patientID = "donorID", libraryID = "libID",
      run.lmekin = TRUE, run.contrast = TRUE,
      subset.genes = c("ENSG00000250479", "ENSG00000250510", "ENSG00000255823"),
      model = "~ virus*asthma + (1|donorID)",
      contrast.var=c("virus", "virus:asthma"))
```

8 summarise_kmFit

summarise_kmFit

Summarise kmFit FDR results

Description

Summarise number of significant genes at various FDR cutoffs. Can split by up/down fold change as well.

Usage

```
summarise_kmFit(
  fdr,
  fdr.cutoff = c(0.05, 0.1, 0.2, 0.3, 0.4, 0.5),
  contrast = FALSE,
  FCgroup = FALSE,
  intercept = FALSE
)
```

Arguments

fdr data.frame output by kimma::kmFit()

fdr.cutoff numeric vector of FDR cutoffs to summarise at

contrast logical if should separate summary by pairwise contrasts within variables

FCgroup logical if should separate summary by up/down fold change groups

intercept logical if should include intercept variable in summary

Value

Data frame with total significant genes for each variable at various FDR cutoffs

summarise_ImFit 9

summarise_lmFit

Summarise lmFit FDR results

Description

Summarise number of significant genes at various FDR cutoffs. Can split by up/down fold change as well.

Usage

```
summarise_lmFit(
   fdr,
   fdr.cutoff = c(0.05, 0.1, 0.2, 0.3, 0.4, 0.5),
   FCgroup = FALSE,
   intercept = FALSE
)
```

Arguments

fdr data.frame output by kimma::extract_lmFit()
fdr.cutoff numeric vector of FDR cutoffs to summarise at

FCgroup logical if should separate summary by up/down fold change groups

intercept logical if should include intercept variable in summary

Value

Data frame with total significant genes for each variable at various FDR cutoffs

```
# Run limma model
design <- model.matrix(~ virus, data = example.voom$targets)
fit <- limma::eBayes(limma::lmFit(example.voom$E, design))

## Get results
model_results <- extract_lmFit(design = design, fit = fit)

# Summarise results
fdr.summary <- summarise_lmFit(fdr = model_results, fdr.cutoff = c(0.05, 0.5), FCgroup = TRUE)</pre>
```

Index

```
* datasets
    example.dat, 2
    example.kin, 3
    example.voom, 3

example.dat, 2
example.kin, 3
example.voom, 3
extract_lmFit, 5

kmFit, 6

summarise_kmFit, 8
summarise_lmFit, 9
```