

T

The 7The 7thth Multiversal Multiversal
BOINC WorkshopBOINC Workshop

Hannover, GermanyHannover, Germany
18-19 August 201118-19 August 2011

The BOINC community

UC Berkeley
developers (2.5)

Projects PC volunteers
(300,000)

Other volunteers:
testing

translation
support

Computer scientists

Workshop goals

● Everyone learns what everyone else is doing

● Form collaborations

– don’t be shy!

● Plan BOINC development

– tell us what you want

Hackfest (tomorrow)

● Topics

– multi-user projects

– VM apps

– distributed storage

– ...

● Goal: get something concrete done

– Improve docs

– design and/or implement software

The state of volunteer computing

● Volunteers: down by about 15% last 6 months

– 290K people, 450K computers

● Science projects: stagnant

– prime numbers and cryptosystems

● Computer science research: stagnant

● My viewpoint: we built it and they haven’t come.
But let’s keep building anyway.

To projects:

● Do outreach

– notices

– automated emails

– mass emails

– message boards

– mass media

● Use current server code

To developers/researchers:

● Talk with me before starting anything

– especially if it’s of general utility

davea@ssl.berkeley.edu

What’s new in BOINC?

Notices

Projects:
● news
● notifications
● message boards

client

scheduler

RSS

Simple view

● Accessible

● Translatable

● Simpler skinning

Choose-project dialog

Support for VM apps

● VirtualBox wrapper

client vboxwrapper

VirtualBox

Apps running
in VMs

boinc/
slots/

0/
vm_image.vdi
share/

input, output files

OpenCL support

● Client

– detects and reports OpenCL version

● Scheduler

– opencl plan class

Generalized GPU support

● Old: NVIDIA and ATI only, hardwired

 <ati_req>1</ati_req>

● New: arbitrary GPU types

 <req>
 <type>ati</type>

 </req>

● Config file can specify GPUs with new types,
and BOINC will schedule them correctly

Hysteresis work fetch

● Reduce # of scheduler requests

● Per processor type:

time

device
instances

lower upper

Client scheduling improvements

● Old: resource share enforced per processor type

● New: resource share enforced across all
processor types

CPU

GPU

BCPU A

A

CPU

GPU

BCPU

A

Cleanup of multiprocess jobs

● To stop a job

– enumerate its descendant processes

– ask main process to quit

● kill it if needed

– kill descendants

Improved update_versions

● Old:
apps/appname/
 uppercase_6.15_windows_intelx86__cuda.exe/
 graphics_app=uppercase_graphics_6.14_windows_intelx86.exe
 ...

● New:
apps/appname/
 6.14/
 6.15/
 windows_intelx86/

 windows_intelx86__cuda/
 version.xml
 uppercase_6.15_windows_intelx86.exe
 ...

BOINC client emulator

● real scheduling code + simulation of scheduler
RPCs and job execution

● Input: “scenario”, described by a client state file

● Output: 4 figures of merit, event log, HTML
timeline

● Uses:

– develop and evaluate scheduling policies

– make real-world situations reproducible

● Web interface to emulator

> 2GB RAM jobs on 32-bit hosts

● User address space limits for 32-bit apps:

– Windows: 2 GB

– Linux: 3 GB

– Mac OS X: 4 GB

● Scheduler dispatches > 2GB jobs accordingly

Homogeneous app version

● Lets you specify that all instances of a given job
should be done with the same app version

● Use, e.g., if GPU versions don’t validate against
CPU versions

● Selectable per app

In progress

OpenID support

Multi-user projects

● Job submitters have user accounts

● Accounts have quotas

● Access control system

● Remote job submission

job submitters
Web interface

(portal)
BOINC
project

remote job
submission
(web service)

admins

BOINC on Android

● 5 billion mobile systems:

– 2 GFLOPS, 32 GB stable storage, 1 GB RAM

Linux

Android

BOINC GUI
(Java)

BOINC client
(C++)

app
(C++)

Volunteer storage

BOINC infrastructure
● DB table of files and instances
● Info on host availability and churn
● File transfers: client/server, maybe client/client
● Share-based space allocation on clients

storage applications

locality scheduling

pure storage

result archival

data stream buffering

dataset storage

Scheduling (server)

● Batch scheduling

– makespan minimization

– dynamic completion estimates

● Unification

– Throughput-oriented (job cache)

– Locality scheduling

– Co-scheduling (Volpex)

– Batch

