BEiT: BERT Pre-Training of Image Transformers, arxiv
PaddlePaddle training/validation code and pretrained models for BEiT.
The official and 3rd party pytorch implementation are here.
This implementation is developed by PaddleViT.
- Update (2022-03-24): Code is refactored and bugs are fixed.
- Update (2021-10-19): Bug fix and weights links are updated.
- Update (2021-09-27): Code is released and ported weights are uploaded.
Model | Acc@1 | Acc@5 | #Params | FLOPs | Image Size | Crop_pct | Interpolation | Link |
---|---|---|---|---|---|---|---|---|
beit_base_patch16_224 | 85.21 | 97.66 | 87M | 12.7G | 224 | 0.9 | bicubic | google/baidu |
beit_base_patch16_384 | 86.81 | 98.14 | 87M | 37.3G | 384 | 1.0 | bicubic | google/baidu |
beit_large_patch16_224 | 87.48 | 98.30 | 304M | 45.0G | 224 | 0.9 | bicubic | google/baidu |
beit_large_patch16_384 | 88.40 | 98.60 | 304M | 131.7G | 384 | 1.0 | bicubic | google/baidu |
beit_large_patch16_512 | 88.60 | 98.66 | 304M | 234.0G | 512 | 1.0 | bicubic | google/baidu |
Note:
The results are evaluated on ImageNet2012 validation set.
These models have been fine-tuned (ImageNet 22k -> 1k), weights are ported from here
Note : We are developing the pretraining using DALL-E, which is not supported right now.
ImageNet2012 dataset is used in the following file structure:
│imagenet/
├──train_list.txt
├──val_list.txt
├──train/
│ ├── n01440764
│ │ ├── n01440764_10026.JPEG
│ │ ├── n01440764_10027.JPEG
│ │ ├── ......
│ ├── ......
├──val/
│ ├── n01440764
│ │ ├── ILSVRC2012_val_00000293.JPEG
│ │ ├── ILSVRC2012_val_00002138.JPEG
│ │ ├── ......
│ ├── ......
train_list.txt
: list of relative paths and labels of training images. You can download it from: google/baiduval_list.txt
: list of relative paths and labels of validation images. You can download it from: google/baidu
To use the model with pretrained weights, download the .pdparam
weight file and change related file paths in the following python scripts. The model config files are located in ./configs/
.
For example, assume weight file is downloaded in ./beit_base_patch16_224.pdparams
, to use the beit_base_patch16_224
model in python:
from config import get_config
from beit import build_beit as build_model
# config files in ./configs/
config = get_config('./configs/beit_base_patch16_224.yaml')
# build model
model = build_model(config)
# load pretrained weights
model_state_dict = paddle.load('./beit_base_patch16_224.pdparams')
model.set_state_dict(model_state_dict)
To evaluate model performance on ImageNet2012, run the following script using command line:
sh run_eval_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python main_multi_gpu.py \
-cfg='./configs/beit_base_patch16_224.yaml' \
-dataset='imagenet2012' \
-batch_size=256 \
-data_path='/dataset/imagenet' \
-eval \
-pretrained='./beit_base_patch16_224.pdparams' \
-amp
Note: if you have only 1 GPU, change device number to
CUDA_VISIBLE_DEVICES=0
would run the evaluation on single GPU.
To train the model on ImageNet2012, run the following script using command line:
sh run_train_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python main_multi_gpu.py \
-cfg='./configs/beit_base_patch16_224.yaml' \
-dataset='imagenet2012' \
-batch_size=256 \
-data_path='/dataset/imagenet' \
-amp
Note: it is highly recommanded to run the training using multiple GPUs / multi-node GPUs.
@article{beit,
title={{BEiT}: {BERT} Pre-Training of Image Transformers},
author={Hangbo Bao and Li Dong and Furu Wei},
year={2021},
eprint={2106.08254},
archivePrefix={arXiv},
primaryClass={cs.CV}
}