-
Notifications
You must be signed in to change notification settings - Fork 320
/
load_pytorch_weights.py
264 lines (222 loc) · 9.72 KB
/
load_pytorch_weights.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
# Copyright (c) 2021 PPViT Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""convert pytorch model weights to paddle pdparams"""
import os
import numpy as np
import paddle
import torch
import timm
from halonet import build_halonet as build_model
from config import get_config
def print_model_named_params(model):
print('----------------------------------')
for name, param in model.named_parameters():
print(name, param.shape)
print('----------------------------------')
def print_model_named_buffers(model):
print('----------------------------------')
for name, param in model.named_buffers():
print(name, param.shape)
print('----------------------------------')
def torch_to_paddle_mapping(model_name, config):
mapping = [
('stem.conv1.conv', 'stem.conv1.conv'),
('stem.conv1.bn', 'stem.conv1.bn'),
('stem.conv2.conv', 'stem.conv2.conv'),
('stem.conv2.bn', 'stem.conv2.bn'),
('stem.conv3.conv', 'stem.conv3.conv'),
('stem.conv3.bn', 'stem.conv3.bn'),
]
for stage_idx in range(4): # 4 stages
stage_blocks = eval(f'config.MODEL.STAGE{stage_idx+1}_BLOCK')
for block_idx in range(len(stage_blocks)):
th_prefix = f'stages.{stage_idx}.{block_idx}'
pp_prefix = f'stage{stage_idx+1}.blocks.{block_idx}'
if stage_blocks[block_idx] == 'bottle':
layer_mapping = [
(f'{th_prefix}.conv1_1x1.conv', f'{pp_prefix}.conv1_1x1.conv'),
(f'{th_prefix}.conv1_1x1.bn', f'{pp_prefix}.conv1_1x1.bn'),
(f'{th_prefix}.conv2_kxk.conv', f'{pp_prefix}.conv2_kxk.conv'),
(f'{th_prefix}.conv2_kxk.bn', f'{pp_prefix}.conv2_kxk.bn'),
(f'{th_prefix}.conv3_1x1.conv', f'{pp_prefix}.conv3_1x1.conv'),
(f'{th_prefix}.conv3_1x1.bn', f'{pp_prefix}.conv3_1x1.bn'),
]
else: # 'attn'
layer_mapping = [
(f'{th_prefix}.conv1_1x1.conv', f'{pp_prefix}.conv1_1x1.conv'),
(f'{th_prefix}.conv1_1x1.bn', f'{pp_prefix}.conv1_1x1.bn'),
(f'{th_prefix}.self_attn.q', f'{pp_prefix}.self_attn.q'),
(f'{th_prefix}.self_attn.kv', f'{pp_prefix}.self_attn.kv'),
(f'{th_prefix}.self_attn.pos_embed.height_rel', f'{pp_prefix}.self_attn.pos_embed.rel_height'),
(f'{th_prefix}.self_attn.pos_embed.width_rel', f'{pp_prefix}.self_attn.pos_embed.rel_width'),
(f'{th_prefix}.post_attn', f'{pp_prefix}.post_attn.bn'),
(f'{th_prefix}.conv3_1x1.conv', f'{pp_prefix}.conv3_1x1.conv'),
(f'{th_prefix}.conv3_1x1.bn', f'{pp_prefix}.conv3_1x1.bn'),
]
mapping.extend(layer_mapping)
if block_idx == 0:
mapping.extend([(f'{th_prefix}.shortcut.conv', f'{pp_prefix}.creat_shortcut.conv'),
(f'{th_prefix}.shortcut.bn', f'{pp_prefix}.creat_shortcut.bn')])
head_mapping = [
('head.fc', 'classifier.1'),
]
mapping.extend(head_mapping)
return mapping
def convert(torch_model, paddle_model, model_name, config):
def _set_value(th_name, pd_name, transpose=True):
th_shape = th_params[th_name].shape
pd_shape = tuple(pd_params[pd_name].shape) # paddle shape default type is list
#assert th_shape == pd_shape, f'{th_shape} != {pd_shape}'
print(f'**SET** {th_name} {th_shape} **TO** {pd_name} {pd_shape}')
if isinstance(th_params[th_name], torch.nn.parameter.Parameter):
value = th_params[th_name].data.numpy()
else:
value = th_params[th_name].numpy()
if len(value.shape) == 2 and transpose:
value = value.transpose((1, 0))
pd_params[pd_name].set_value(value)
# 1. get paddle and torch model parameters
pd_params = {}
th_params = {}
for name, param in paddle_model.named_parameters():
pd_params[name] = param
for name, param in torch_model.named_parameters():
th_params[name] = param
for name, param in paddle_model.named_buffers():
pd_params[name] = param
for name, param in torch_model.named_buffers():
th_params[name] = param
# 2. get name mapping pairs
mapping = torch_to_paddle_mapping(model_name, config)
missing_keys_th = []
missing_keys_pd = []
zip_map = list(zip(*mapping))
th_keys = list(zip_map[0])
pd_keys = list(zip_map[1])
for key in th_params:
missing = False
if key not in th_keys:
missing = True
if key.endswith('.weight'):
if key[:-7] in th_keys:
missing = False
if key.endswith('.bias'):
if key[:-5] in th_keys:
missing = False
if key.endswith('.running_mean'):
if key[:-13] in th_keys:
missing = False
if key.endswith('.running_var'):
if key[:-12] in th_keys:
missing = False
if missing:
missing_keys_th.append(key)
for key in pd_params:
missing = False
if key not in pd_keys:
missing = True
if key.endswith('.weight'):
if key[:-7] in pd_keys:
missing = False
if key.endswith('.bias'):
if key[:-5] in pd_keys:
missing = False
if key.endswith('._mean'):
if key[:-6] in pd_keys:
missing = False
if key.endswith('._variance'):
if key[:-10] in pd_keys:
missing = False
if missing:
missing_keys_pd.append(key)
print('====================================')
print('missing_keys_pytorch:')
print(missing_keys_th)
print('missing_keys_paddle:')
print(missing_keys_pd)
print('====================================')
# 3. set torch param values to paddle params: may needs transpose on weights
for th_name, pd_name in mapping:
if th_name in th_params and pd_name in pd_params: # nn.Parameters
if '_rel' in th_name:
_set_value(th_name, pd_name, transpose=False)
else:
_set_value(th_name, pd_name)
else:
if f'{th_name}.weight' in th_params and f'{pd_name}.weight' in pd_params:
th_name_w = f'{th_name}.weight'
pd_name_w = f'{pd_name}.weight'
_set_value(th_name_w, pd_name_w)
if f'{th_name}.bias' in th_params and f'{pd_name}.bias' in pd_params:
th_name_b = f'{th_name}.bias'
pd_name_b = f'{pd_name}.bias'
_set_value(th_name_b, pd_name_b)
if f'{th_name}.running_mean' in th_params and f'{pd_name}._mean' in pd_params:
th_name_w = f'{th_name}.running_mean'
pd_name_w = f'{pd_name}._mean'
_set_value(th_name_w, pd_name_w)
if f'{th_name}.running_var' in th_params and f'{pd_name}._variance' in pd_params:
th_name_b = f'{th_name}.running_var'
pd_name_b = f'{pd_name}._variance'
_set_value(th_name_b, pd_name_b)
return paddle_model
def main():
paddle.set_device('cpu')
model_name_list = [
"halonet_26t_256",
"halonet_50ts_256",
]
for model_name in model_name_list:
print(f'============= NOW: {model_name} =============')
sz = 256
config = get_config(f'./configs/{model_name}.yaml')
paddle_model = build_model(config)
paddle_model.eval()
print_model_named_params(paddle_model)
print_model_named_buffers(paddle_model)
print('+++++++++++++++++++++++++++++++++++')
device = torch.device('cpu')
if '26t' in model_name:
torch_model_name = 'halonet26t'
elif '50ts' in model_name:
torch_model_name = 'halonet50ts'
else:
raise NotImplementedError()
torch_model = timm.create_model(torch_model_name, pretrained=True)
torch_model.eval()
torch_model = torch_model.to(device)
print_model_named_params(torch_model)
print_model_named_buffers(torch_model)
# convert weights
paddle_model = convert(torch_model, paddle_model, model_name, config)
# check correctness
x = np.random.randn(2, 3, sz, sz).astype('float32')
x_paddle = paddle.to_tensor(x)
x_torch = torch.Tensor(x).to(device)
out_torch = torch_model(x_torch)
out_paddle = paddle_model(x_paddle)
out_torch = out_torch.data.cpu().numpy()
out_paddle = out_paddle.cpu().numpy()
print(out_torch.shape, out_paddle.shape)
print(out_torch[0, 0:100])
print('========================================================')
print(out_paddle[0, 0:100])
assert np.allclose(out_torch, out_paddle, atol = 1e-5)
# save weights for paddle model
model_path = os.path.join(f'./{model_name}.pdparams')
paddle.save(paddle_model.state_dict(), model_path)
print(f'{model_name} done')
print('all done')
if __name__ == "__main__":
main()