-
Notifications
You must be signed in to change notification settings - Fork 78
/
Copy pathnode2vec_trainer.py
130 lines (107 loc) · 5.16 KB
/
node2vec_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import os
# os.environ['CUDA_VISIBLE_DEVICES'] = '0'
# os.environ['TL_BACKEND'] = 'torch'
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
# 0:Output all; 1:Filter out INFO; 2:Filter out INFO and WARNING; 3:Filter out INFO, WARNING, and ERROR
import argparse
import tensorlayerx as tlx
from gammagl.datasets import Planetoid
from gammagl.models import Node2vecModel
from gammagl.utils import calc_gcn_norm, mask_to_index
from tensorlayerx.model import TrainOneStep, WithLoss
from sklearn.linear_model import LogisticRegression
class Unsupervised_Loss(WithLoss):
def __init__(self, net, loss_fn):
super(Unsupervised_Loss, self).__init__(backbone=net, loss_fn=loss_fn)
def forward(self, data, label):
logits = self.backbone_network(data["edge_index"])
loss = self._loss_fn(logits, label)
return loss
def calculate_acc(train_z, train_y, test_z, test_y, solver='lbfgs', multi_class='auto', max_iter=150):
train_z = tlx.convert_to_numpy(train_z)
train_y = tlx.convert_to_numpy(train_y)
test_z = tlx.convert_to_numpy(test_z)
test_y = tlx.convert_to_numpy(test_y)
clf = LogisticRegression(solver=solver, multi_class=multi_class, max_iter=max_iter).fit(train_z, train_y)
return clf.score(test_z, test_y)
def main(args):
# load datasets
if str.lower(args.dataset) not in ['cora', 'pubmed', 'citeseer']:
raise ValueError('Unknown dataset: {}'.format(args.dataset))
dataset = Planetoid(args.dataset_path, args.dataset)
graph = dataset[0]
edge_index = graph.edge_index
edge_weight = tlx.convert_to_tensor(calc_gcn_norm(edge_index, graph.num_nodes, edge_weight=graph.edge_weight))
# for mindspore, it should be passed into node indices
train_idx = mask_to_index(graph.train_mask)
test_idx = mask_to_index(graph.test_mask)
val_idx = mask_to_index(graph.val_mask)
model = Node2vecModel(edge_index=edge_index,
edge_weight=edge_weight,
embedding_dim=args.embedding_dim,
walk_length=args.walk_length,
p=args.p,
q=args.q,
num_walks=args.num_walks,
window_size=args.window_size,
name="Node2vec")
optimizer = tlx.optimizers.Adam(lr=args.lr)
train_weights = model.trainable_weights
loss_func = Unsupervised_Loss(net=model, loss_fn=tlx.losses.absolute_difference_error)
train_one_step = TrainOneStep(loss_func, optimizer, train_weights)
data = {
"x": graph.x,
"y": graph.y,
"edge_index": graph.edge_index,
"train_idx": train_idx,
"test_idx": test_idx,
"val_idx": val_idx,
"num_nodes": graph.num_nodes,
}
best_val_acc = 0
for epoch in range(args.n_epoch):
model.set_train()
train_loss = train_one_step(data, tlx.convert_to_tensor(0, dtype=tlx.float32))
model.set_eval()
z = model.campute()
val_acc = calculate_acc(tlx.gather(z[0], data['train_idx']), tlx.gather(graph.y, data['train_idx']),
tlx.gather(z[0], data['val_idx']), tlx.gather(graph.y, data['val_idx']),
max_iter=150)
print("Epoch [{:0>3d}] ".format(epoch + 1) \
+ " train loss: {:.4f}".format(train_loss.item()) \
+ " val acc: {:.4f}".format(val_acc))
# save best model on evaluation set
if val_acc > best_val_acc:
best_val_acc = val_acc
model.save_weights(args.best_model_path + model.name + ".npz", format='npz_dict')
model.load_weights(args.best_model_path + model.name + ".npz", format='npz_dict')
if tlx.BACKEND == 'torch':
model.to(data['x'].device)
model.set_eval()
z = model.campute()
test_acc = calculate_acc(tlx.gather(z[0], data['train_idx']), tlx.gather(graph.y, data['train_idx']),
tlx.gather(z[0], data['test_idx']), tlx.gather(graph.y, data['test_idx']),
max_iter=150)
print("Test acc: {:.4f}".format(test_acc))
return test_acc
if __name__ == '__main__':
# parameters setting
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default='cora', help='dataset')
parser.add_argument("--dataset_path", type=str, default=r'', help="path to save dataset")
parser.add_argument("--best_model_path", type=str, default=r'./', help="path to save best model")
parser.add_argument("--lr", type=float, default=0.05, help="learning rate")
parser.add_argument("--n_epoch", type=int, default=100, help="number of epoch")
parser.add_argument("--embedding_dim", type=int, default=128)
parser.add_argument("--walk_length", type=int, default=10)
parser.add_argument("--p", type=float, default=0.5)
parser.add_argument("--q", type=float, default=2.0)
parser.add_argument("--num_walks", type=int, default=10)
parser.add_argument("--window_size", type=int, default=5)
parser.add_argument("--gpu", type=int, default=0)
args = parser.parse_args()
if args.gpu >= 0:
tlx.set_device("GPU", args.gpu)
else:
tlx.set_device("CPU")
main(args)