
Notes

®

By Kwok Kong

Application Note
AN-531

PCI Express® System Interconnect
Software Architecture
Introduction
A multi-peer system using a standard-based PCI Express (PCIe®) multi-port switch as the system inter-

connect was described by Kong [1]. That paper described the different address domains existing in the
Root Processor and the Endpoint Processor, the memory map management, enumeration and initialization,
peer-to-peer communication mechanisms, interrupt and error reporting, and possible redundant topologies.
Since the release of the white paper, IDT has designed and implemented a multi-peer system using the
Intel x86 based system as the Root Processor (RP), IDT’s PES64H16 device as the multi-port PCIe switch
for the system interconnect and the Intel IOP80333 [2] as the Endpoint Processor (EP). This paper presents
the software architecture of the multi-peer system as implemented by IDT. This architecture may be used as
a foundation or reference to build more complex systems.

System Architecture
A multi-peer system topology using PCIe as the system interconnect is shown in Figure 1. There is only

a single Root Complex Processor (RP) in this topology. The RP is attached to the single upstream port (UP)
of the PCIe switch. The RP is responsible for the system initialization and enumeration process as in any
other PCIe system. A multi-port PCIe switch is used to connect multiple Endpoint Processors (EPs) in the
system. An EP is a processor with one of its PCIe interfaces configured as a PCIe endpoint.

Figure 1 Multi-peer System Topology using PCIe as the System Interconnect

Root Complex Processor
A standard based PC is used as the RP. The RP uses an Intel Xeon CPU and the E7520 chipset to

support the PCIe interface. One PCIe slot is used to connect to the multi-port PCIe switch. The system
block diagram of the RP is shown in Figure 2.

. . .

Root Complex

Multi-port PCIe switch

Endpoint
Processor

UP

DP DP DP

UP: Upstream Port
DP: Downstream PortProcessor

Endpoint
Processor

Endpoint
Processor
1 of 20 December 19, 2007

IDT Application Note AN-531

Notes
Figure 2 RP System Block Diagram

PCIe Switch
The IDT 89EBHPES64H16 evaluation board [3] (referred to as EB64H16) is used as the multi-port PCIe

switch module. The system block diagram of an EB64H16 is shown in Figure 3. There is an IDT
89HPES64H16 PCIe switch [4] (referred to as PES64H16) on the evaluation board. There are 16 PCI
Express connectors in the EB64H16. A port may be configured as either a x4 or x8 port. When all the ports
are configured to be x8 ports, only 8 of the PCI Express connectors are used to support the 8 ports of x8
configuration. This implementation configures all ports to be x8 ports.

The upstream port is connected to the RP via two x4 Infiniband cables. The RP is plugged directly into
the PCI Express connector.

Intel Xeon
CPU

Intel E7520
Memory

Controller Hub

Intel 82801ER
I/O Controller

Memory
PCIe (x8)

PCIe (x8)

S
L
O
T

S
L
O
T I/O I/O. . .

Root Complex Processor

Connect to a Multi-port PCIe Switch
2 of 20 December 19, 2007

IDT Application Note AN-531

Notes
Figure 3 Multi-port PCIe Switch Module

Endpoint Processor
The Intel® IQ80333 I/O Processor Reference Board [5] is used as an Endpoint Processor (EP). This

board has the form factor of a PCI-Express card which can be plugged into the EB64H16 PCIe slot directly.
The system block diagram of the IQ80333 I/O Processor Reference Board is shown in Figure 4. A Gigabit
Ethernet MAC controller is attached to the PCI-X interface on the IOP80333 I/O Processor. The Gigabit
Ethernet is configured as a private device and can only be accessed from the local IOP80333 I/O
processor.

Figure 4 EP System Block Diagram

. . .

PCI to PCI
Bridge

PCI to PCI
Bridge

UP

DP DP DP

Connect to the RP

Connect to an EP Connect to an EP Connect to an EP

IDT PES64H16 PCIe Switch

EB64H16 Multi-port PCIe Switch Module

PCI to PCI
Bridge

PCI to PCI
Bridge

Intel IOP80333
I/O Processor

Memory

GigE
MAC

GigE

PCIe (x8)

PCI-X

Connect to Downstream Port of the PCIe Switch
3 of 20 December 19, 2007

IDT Application Note AN-531

Notes
 The functional block diagram of an IOP80333 is shown in Figure 5. The IOP80333 is a multi-function
device that integrates the Intel XScale core with intelligent peripherals with dual PCI Express-to-PCI
Bridges. There is a 2-channel DMA controller that is used to transfer data between the internal bus and the
PCIe interface. The Address Translation Unit (ATU) implements the inbound and outbound address transla-
tion windows from/to the PCI-X/PCIe interface. The Message Unit implements the inter-processors commu-
nication mechanism such as inbound/outbound message and door bell registers. The Inbound and
Outbound Queue Structures are also implemented in the Message Unit. Please refer to the Intel 80333 I/O
Processor Developer’s Manual[2] for a detailed description of the IOP80333 processor.

Figure 5 Intel IOP80333 Functional Block Diagram

General Software Architecture
The software is implemented as Linux modules and device drivers on the RP and EP. The software

architecture for the RP and EP are very similar. The software is divided into three layers. The Function
Service Layer is the top layer. It provides the device driver interface to the Linux kernel. The Message Layer
is the middle layer. It encapsulates and decapsulates transport messages in a common format. The lowest
layer is the Transport Layer. The Transport Layer provides the service to send and receive data across the
PCIe interface. The Transport Layer is hardware-dependent.

RP Software Architecture
 The RP software runs under Linux Fedora 6. The software architecture is shown in Figure 6. The Func-

tion Service Layer provides the device driver functions to the Linux kernel. In this example, four function
services are identified. The Raw Data Function Service provides a service to exchange raw data between
EPs and RP. The Ethernet Function Service provides a virtual Ethernet interface function. RP sends and
receives Ethernet packets through this function service. The Disk Function Service provides a virtual disk
interface. The Disk Function Service is not implemented for the current version of the software. The
Configuration Function Service provides functions for system management purpose.

Intel Xscale
Core Bus

Interface Unit

DDR Interface
Memory

Controller
UART
Units

I2C
Units

16-bit
PBI

Application
Accelerator

Unit

Interrupt/
GPIO
Unit

2-channel
DMA

Controller
Timers ATU Message

Unit

PCIe to PCI-X
Bridge

PCIe to PCI-X
Bridge

SMBus
Arbiter

Arbiter/SHPC
PCIe x8

IOAPIC

IOAPIC

A PCI-X

B PCI-X
4 of 20 December 19, 2007

IDT Application Note AN-531

Notes
 The Message Frame Service encapsulates the function service data in a common Message Frame
header on transmit. Once the Message Frame is formatted properly, it is sent to the Transport Service
Layer for transfer to a remote EP. When the Message Frame Service receives a message from a remote
EP, it decodes the message and passes the function data to the appropriate function in the Function
Service, i.e., it passes an incoming Ethernet packet to the Ethernet Function Service.

The Transport Service Layer provides the data transport between the local RP and a remote EP. This
layer is EP dependent. A unique transport service is required for each EP type. The current software
release supports the IOP80333 as an EP and a x86 as an RP.

The local Architecture Service provides a hardware abstract service. It provides a hardware indepen-
dent service to the Message Frame Service Layer and the Transport Service Layer, such as the translation
between virtual and physical memory address, translation between local and system domain address and
the hardware-specific DMA service. If the local device supports a DMA engine, the Local Architecture
Service provides the device driver to the DMA engine. If the local device does not support a DMA engine,
the Local Architecture Service simulates a DMA engine by doing a memory copy operation in software.

Figure 6 RP Software Architecture

EP Software Architecture
EP software architecture is shown in Figure 7. It is similar to the RP software architecture. The Function

and Message Frame services on the EP are the same as on the RP. In addition to the RP software architec-
ture components, the EP software architecture includes a few EP hardware-specific components such as
local EP Inbound Transport Service and Local EP to RP Transport Service. All the local EP-specific
services are part of a single EP-specific device driver. For example, when the EP is IOP80333, all the local
EP specific services are for the local IOP80333 implemented in a single IOP80333 EP device driver
module.

Figure 7 EP Software Architecture

Message Frame Service

Raw Data
Function
Service

Ethernet
Function
Service

Disk
Function
Service

Configuration
Function
Service

IOP80333
Transport
Service

PowerQUICC
Transport
Service

x86
Transport
Service

Other
Transport
Service

Function
Service
Layer

Message
FrameService Layer

Transport
Service
Layer

Local
Architecture

Service

Message Frame Service

Raw Data
Function
Service

Ethernet
Function
Service

Disk
Function
Service

Configuration
Function
Service

IOP80333
Transport
Service

PowerQUICC
Transport
Service

x86
Transport
Service

Local EP
Inbound

Transport

Function
Service
Layer

Message
FrameService Layer

Transport
Service
Layer

Local
Architecture

Service

Service
5 of 20 December 19, 2007

IDT Application Note AN-531

Notes
 The local EP Inbound Transport Service implements the Inbound Message Interrupt Service routines
and notifies the Message Frame Service Layer of all the inbound traffic from the RP and other EPs. The
Local EP to RP Transport Service implements the outbound transport service towards the RP. The Endpoint
specific Transport Service implements the outbound transport service towards the specific EP, i.e., the
IOP80333 Transport Service implements the outbound transport service towards an IOP80333 EP. It
should be noted that all the inbound traffic goes through the local EP inbound transport service while the
outbound traffic goes through one of the other peer-specific transport services, such as IOP80333, FreeS-
cale PowerQUICC III, or Local EP to RP transport services.

Since each of the peer-specific transport services is implemented as a separate device driver module on
the EP and all the local EP-specific services are implemented as a single local EP device driver, any one of
the peer-specific transport services may be initialized before or after the local EP device driver is completely
initialized. When a peer is added through a notification from the RP, the Message Frame Service Layer
should immediately associate the newly added peer with its corresponding transport service if its transport
service is already registered. Otherwise, the association of the peer with its transport service will be delayed
until its transport service registers itself to the Message Frame Service. After the association of a peer and
its transport service, the Message Frame Service notifies the function services of the new peer. Between
the time a peer is added and the association between the peer and its Transport Service is made, the func-
tion services may receive messages from this new peer but are unable to respond to these messages
immediately. The function services may decide to delay the processing of these inbound messages, or they
may process these messages immediately and queue the response messages to be transmitted later. The
case where a specific peer transport service is supported in some peers and not the others in the system is
a user configuration error and not considered here.

Application Examples
An I/O sharing application example is shown in Figure 8. In this system, there is an Ethernet interface in

EP1. This is the only Ethernet interface to connect this system to the Ethernet network. The Ethernet inter-
face is shared by EP2, EP3, and the RP.

Figure 8 I/O Sharing Application Example

The protocol diagram of the sharing of Ethernet is shown in Figure 9. An Ethernet Function Service is
running on an Ethernet EP. The Ethernet Function Service provides a virtual Ethernet interface to the upper
layer application such as the IP stack. From the upper layer’s point of view, there is a physical Ethernet
interface. The Ethernet Function Service makes requests to the Message Frame Service to encapsulate the
Ethernet packet in a generic message frame. The remote Transport Service then transports the message
frame to its destination.

RP

EP1 EP2 EP3

Ethernet

Multi-port PCIe Switch
6 of 20 December 19, 2007

IDT Application Note AN-531

Notes
 The EP that provides the sharing of its physical Ethernet interface is the Ethernet Server. The Ethernet
Server provides the actual Ethernet connection to the Ethernet network. It uses the Ethernet Function
Service on the PCIe interface to send/receive Ethernet packets to/from other EPs and the RP. It runs the
Bridging Application to forward Ethernet packets between the Ethernet Function Service and the actual
physical Ethernet interface. The Bridging Application may be replaced with an IP Routing Application such
that IP packets are routed between the Ethernet Function Service and the actual physical Ethernet inter-
face. Multiple EPs can share a single Ethernet Server and hence the actual physical Ethernet interface. The
EP can communicate with other EPs directly without the involvement of the Ethernet Server.

Figure 9 Ethernet Sharing Protocol Diagram

A network router application example is shown in Figure 10. In this example, there are one or many
network interfaces supported by each EP. The network interfaces may be Ethernet, WAN interfaces such as
DSL, T1, or OC-3. Each EP runs a routing application to forward packets between its network interfaces
and the interfaces on the other EPs in the system.

Figure 10 Router Application Example

Bridging

Ethernet
Device
Driver

Ethernet

Ethernet
Function
Service

Message
Frame
Service

Transport
Service

Upper Layer

Ethernet
Function Service

Message Frame
Service

Transport
Service

PCIe

Ethernet Server EP Ethernet EP

RP

EP1 EP2 EP3

Multi-port PCIe Switch

Network Interfaces Network Interfaces Network Interfaces
7 of 20 December 19, 2007

IDT Application Note AN-531

Notes
 The protocol diagram of the router application example is shown in Figure 11. The Ethernet Function
Service runs on top of the PCIe interface. All the EPs communicate with each other via this virtual Ethernet
interface on PCIe. A network service and routing application run on top of the local network interface device
drivers and the Ethernet Function Service. All packets received by the network interfaces, including the
Ethernet Function Service, are passed to the Routing Application. The Routing Application inspects the
packet header and makes a packet forwarding decision. If the packet has to be sent to a different network
interface on the same EP, the packet is forwarded directly to the local network interface. If the packet has to
be sent to a network interface on a different EP, the packet is sent to the Ethernet Function Service to reach
the destination EP. The destination EP then forwards the packet to its local destination network interface.

Figure 11 Router Protocol Diagram

Address Translation
There are two address domains in a multi-peer system using PCIe as the system interconnect. The

system domain is the global address domain as seen by the RP. The local domain is the address as seen
by the local EP. These two domains are independent of each other. The RP is free to assign address space
in the system domain and the local EP can freely assign address space in its local domain. In order to
bridge address space between the system domain and the local domain, the EP supports address transla-
tion between the two domains. The address translation is a hardware function that exists in the EP.

Transactions initiated on the system domain and targeted on a local EP’s local domain are referred to as
inbound transactions. Transactions initiated on a local EP’s local domain and targeted at the system
domain are referred to as outbound transactions. During inbound transactions, the Inbound Address Trans-
lation Unit converts a system domain address to the local domain address of an EP. During outbound trans-
actions, the Outbound Address Translation Unit converts an EP’s local domain address to a system domain
address and initiates the data transfer on the system domain.

Inbound Address Translation
The IOP80333 supports 4 inbound address windows. This design uses a single Inbound Address

Window. Inbound Address Window 0 is used. The first 4 Kbytes address of the Inbound Address Window 0
is reserved for the Message Unit. The Windows size is configured to be 1 Mbyte. 1 Mbyte window size is
chosen for this implementation to provide a total of 510 buffers. The window size may be increased or
decreased to provide the optimal number of buffers for a particular application. The Inbound Address
Window is mapped to the EP’s local data buffers. These local buffers are used by the RP and other remote
EPs to send data to this local EP.

Network Services and Routing

Device
Driver

Network I/F

Ethernet
Function
Service

Message
Frame

Service

Transport
Service

PCIe

Network
I/F

Network I/F Network I/F Network I/F

Network Services and Routing

EP1 EP2

Transport
Service

Message
Frame

Service

Ethernet
Function
Service

Device
Driver

Network
I/F

Device
Driver

Network
I/F

Device
Driver

Network
I/F
8 of 20 December 19, 2007

IDT Application Note AN-531

Notes
Figure 12 Inbound Address Window Translation

The Inbound Address Window is shown in Figure 12. A system domain address window is set up by the
RP. During normal system initialization, the RP scans the BAR0 register of the EP’s configuration registers
to determine the size of the memory window required. The RP then assigns a system domain address to
this EP by writing the system domain address to BAR0. The EP configures the translated address window
on its local Inbound Address Translation Unit. Once the Inbound Address Window Translation initialization
is completed, remote RP and EPs can access the local EP’s translated address window directly. All address
ranges outside the local EP’s translated address window are hidden from the RP and remote EPs.

The RP sets up a unique Inbound Translation Window for each EP in the system.

Outbound Address Translation
The IOP80333 supports up to 3 outbound address windows. This design uses one outbound address

window for the system interconnect communication. The outbound address window is set up to access all
the remote EPs. The Outbound Address Translation set up is shown in Figure 13. The outbound address
window 1 is used for the address translation. The size of the outbound address window is fixed at 64
MBytes for the IOP80333. For a system that has up to 15 IOP80333 as EPs, only 16 MBytes of system
domain address space is used. When the local EP needs to access a remote EP’s queue structures, the
local EP performs a memory read/write from/to on its local EP Outbound Address Window. The local
Address Translation Unit forwards the local memory access to the system domain and the local domain
address is translated to the system domain address to access a remote EP. The queue structure to send
data from a local EP to a remote RP is resident on the local EP. The local EP does not need to set up an
outbound address translation window to the RP in order to access the queue structure.

The IOP80333 supports a DMA engine to transfer data between its local and the system address
domains. When an address is setup in the DMA engine, it must specify if the address is in the local or
system domain. When a local EP needs to transfer data to the RP, it sets up the local DMA engine to do the
memory transfer from its local memory to the RP’s memory. When the DMA engine is set up to transfer data
to the RP, a local domain is specified in the source address and a system domain is specified in the destina-
tion address. The local EP uses the DMA engine to transfer data into RP’s memory such that no outbound
address window is required. The same DMA engine setup is used when a local EP transfers data to a
remote EP.

0000 0000

FFFF FFFF FFFF FFFF

0000 0000

Local Domain Address System Domain Address

Translated
Address

BAR0 Address

Inbound
Translation

Window
9 of 20 December 19, 2007

IDT Application Note AN-531

Notes
Figure 13 Outbound Address Translation

Data Transport
An EP sets up two sets of data transfer queues and uses its local DMA engine to transfer data to/from

other EPs and the RP. The inbound queue structure is used to accept data message from other EPs and
the RP. A local EP or RP uses the remote EP’s inbound queue structure to transfer a data message to the
remote EP. A local EP uses its outbound queue structure to transfer a data message to the RP.

There are two queues in the inbound queue structure: the Inbound PostQ and the Inbound FreeQ.
These queues contain the Message Frame Address which is 32 bits wide. The local EP allocates local
buffers in the Inbound Translated Address Window such that remote EPs have access to these buffers.
These buffers are called Message Frames. The addresses of the Message Frame are added to the FreeQ.
When a remote EP needs to send data to the local EP, the remote EP reads from the FreeQ to get a
Message Frame first. The remote EP then transfers data to the Message Frame. After the data transfer is
completed, the remote EP writes the Message Frame Address to the PostQ. The write operation by the
remote EP to the PostQ causes an interrupt to the local EP. The local EP reads from the PostQ to get the
Message Frame Address. It then processes the data in the Message Frame. The Message Frame is freed
back to the FreeQ after the data is processed.

The IOP80333 implements the data transfer queues in hardware. A remote EP or RP performs a single
memory read operation from a local EP’s queue, then removes and returns the first Message Frame in the
queue. A remote EP or RP performs a single memory write operation to a local EP’s queue to add a
Message Frame to the end of the queue.

Inbound Queues
The Inbound Queue Structure is shown in Figure 14. The local EP writes a free Message Frame

Address to the FreeQ. The remote EP reads from the FreeQ when it needs to send data to the local EP.
When the remote EP finishes transferring data to the Message Frame, it writes the Message Frame to the
PostQ to indicate to the local EP that a Message Frame is ready to be processed. The local EP reads from
the PostQ to get the next available Message Frame for processing.

A message frame size of 2 KBytes is used for this implementation. The size of the Inbound Address
Window is 1 MByte. The first 4 KBytes of the Inbound Address Window is reserved for the Message Unit
and hence there are 510 message frames on each IOP80333 EP. The minimum queue size that can be
configured in the IOP80333 is 4K and hence a queue size of 4 K is chosen for this implementation. As the
queue size for each PostQ and FreeQ is 4 K which is bigger than the number of message frames, there is
no possibility of queue overflow.

0000 0000

FFFF FFFF FFFF FFFF

0000 0000

Local Domain Address System Domain Address

BAR0 Address

EP0 Address

EP1 Address
. . .

EP15 Address

EP Outbound

Address Window1

8400 0000

8800 0000
10 of 20 December 19, 2007

IDT Application Note AN-531

Notes
Figure 14 Inbound Queue and Date Buffer Usage

The EP to EP communication is a push model. The sending EP is responsible for transferring the data to
the target EP, i.e., the sending EP pushes data to the target. The local IOP80333 uses its DMA engine to
transfer data to a remote EP.

A data transfer protocol example is shown in Figure 15. In this example, a local EP needs to send a
block of data to a remote EP. Local EP gets a free Message Frame by reading from the FreeQ in the remote
EP. The local EP then writes the data to the Message Frame. After the data transfer is completed, the local
EP writes the Message Frame Address to the PostQ in the remote EP. The remote EP reads the next avail-
able Message Frame from its PostQ and processes the data. Once data is processed, the remote EP
returns the Message Frame to its FreeQ.

A local RP uses the same procedure to send data to a remote EP. Because the local RP does not
support a local DMA engine, the data transfer has to be done via memory copy.

Message Frame#1

Message Frame#2

Message Frame#3

Message Frame#4

Message Frame#510

#3 Address

#510 Address

#4 Address #2 Address

#1 Address

.

.

Local EP

Remote EP/RP

Remote EP/RP

Local EPLocal EP
Data Buffers

FreeQ PostQ

.

11 of 20 December 19, 2007

IDT Application Note AN-531

Notes
Figure 15 Data Transfer Protocol

Outbound Queues
The RP does not implement any queue structure in hardware. A local EP cannot send data to the RP

using the RP’s inbound queue. The outbound queue structure of the local EP is used instead. Each local
EP uses its outbound queue structure to transfer data to the RP.

The outbound queue structure works very similar to the inbound queue structure. The local EP reads
from the outbound FreeQ and writes to the outbound PostQ. The remote RP writes to the outbound FreeQ
and reads from the outbound PostQ.

During initialization, the RP allocates Message Frames from its address space which is in the system
domain. The RP writes the Message Frame Address to the outbound FreeQ of the remote EP. The RP
needs to repeat the allocation of Message Frames for the EPs. A size of 64 KBytes is allocated for each EP.
Each message frame is 2 Kbytes in size and hence 32 message frames are allocated per EP.

When a local EP needs to send a data message to a remote RP, it reads from the outbound FreeQ to
get a Message Frame. The local EP then uses its DMA engine to transfer the data to the Message Frame.
When the data transfer is completed, the local EP writes the Message Frame to its outbound PostQ. The
RP reads from the outbound PostQ to process the incoming data. When the data is processed, the remote
RP returns the Message Frame back to the outbound FreeQ.

Data Movement Examples
A few examples are given to show the sequence of data transport between:

◆ a local EP to a remote EP
◆ a local EP to a remote RP
◆ a local RP to a remote EP

From a Local EP to a Remote EP
A local EP uses the inbound queue structure of a remote EP to transfer data to a remote EP. An

example of the memory address translation window is shown in Figure 16. The local EP sets up an
outbound address window at 0x8400 0000 and the window size is fixed at 64 Mbytes for an IOP80333.This
window is divided into multiple 1 MByte window sizes. Each 1 MByte window is mapped to a single EP. The
IOP80333 supports up to 63 remote EPs. This window is mapped to the system domain address starting at
0x8100 0000. In this example, the local EP address domain between 0x84100000 and 0x84200000 is

Local EP Remote EP
Transfer a block of data

FreeQ

PostQ Process Data

FreeQ

Return buffer to FreeQ

Read Buffer Address

Return Buffer Address

Write Data to Buffer

Write Buffer Address
12 of 20 December 19, 2007

IDT Application Note AN-531

Notes
 mapped to the system domain address between 0x81100000 and 0x81200000. The remote EP sets up its
inbound address window to map the system domain address between 0x81100000 and 0x81200000 to its
local address domain between 0x01000000 and 0x01100000. All these address ranges are setup at run
time during system initialization.

When the local EP accesses the address within the outbound address window, the access is forwarded
to the system domain. The address is translated to the address within the system domain address window.
When the remote EP detects that the address is within its inbound address window, it forwards the access
to its internal bus. The address is translated into the inbound address window. As an example, when the
local EP writes to memory address 0x8418 0000, the write request is forwarded to the system domain. The
address is translated to 0x8118 0000. When the remote EP detects that the address 0x8118 0000 is within
its inbound address window, it forwards the write request to its local bus. The address is translated to its
local address 0x0108 0000. The data is written to 0x0108 0000.

Figure 16 Address Translation Windows Example

Both the local and remote EP have their own code and data space. This space is private to the EP and
can only be accessed by itself.

The inbound queue structure of the remote EP is used to send data from the local EP to the remote EP.
For the Intel IOP80333, the first 4 Kbytes of the inbound address window is reserved for the Messaging
Unit. The remote EP (IOP80333) address map is shown in Figure 17. The inbound queue port is at offset
0x40 which has the address of 0x01000040 in this example. The remote EP reads from the inbound queue
port to get a Message Frame from the FreeQ and it writes to the inbound queue port to write a Message
Frame to the PostQ.

The memory address space between 0x0100 1000 and 0x0110 0000 are for the Message Frame
Buffers. The size of each Message Frame Buffer is 4 Kbytes and hence there are a total of 510 Message
Frame Buffers.

0000 0000 0000 00000000 0000

FFFF FFFF FFFF FFFFFFFF FFFF

Local EP Domain System Domain Remote EP Domain

8400 0000

8800 0000

8410 0000

8420 0000

8110 0000
8120 0000

0100 0000

0110 0000Code and
Data Space

Code and
Data Space

Outbound

Inbound Window

Window System
Domain
Window

8100 0000

8500 0000
13 of 20 December 19, 2007

IDT Application Note AN-531

Notes
Figure 17 Remote EP Address Map

The remote EP does not use the queue port to access the FreeQ and PostQ. The remote EP
(IOP80333) needs to use the queue head and tail pointers read/write from/to a queue. The Message Unit
Registers of the IOP80333 are in the address range of 0xFFFF E310 to 0xFFFF E380. When the remote
EP writes to a queue, it writes at the location pointed to by the queue head pointer. The queue header
pointer is updated by the remote EP after the write access. When the remote EP reads from a queue, it
reads from the location pointed to by the queue tail pointer. The queue tail pointer is updated by the remote
EP after the read access.

The remote EP reads from the location pointed to by the inbound PostQ tail pointer to get a Message
Frame from the PostQ for further processing and it writes to the location pointed to by the inbound FreeQ
head pointer to add a Message Frame to the FreeQ.

In this example, the local EP reads from the address 0x84100040 to get a Message Frame from the
inbound FreeQ and writes to the address 0x84100040 to add a Message Frame to the inbound PostQ of
the remote EP. The remote EP reads from the location pointed to by the address 0xFFFF E36C (Inbound
PostQ tail pointer) to get the next available Message Frame from the inbound PostQ and writes to the loca-
tion pointed to by the 0xFFFF E360 (Inbound FreeQ head pointer) to add a Message Frame to the inbound
FreeQ.

During initialization, the remote EP divides its memory at the inbound address window into multiple
Message Frames. It then adds the Message Frames to the inbound FreeQ. 510 Message Frames are
created in the inbound address window of the remote EP. As the first 4 Kbytes are reserved for the
messaging unit, the first Message Frame starts at address 0x0100 1000 at the local address domain. The
address has to be translated into the system domain address space such that other EPs can access it
directly. The associated system domain address 0x8110 1000 is written into the freeQ instead. The FreeQ
contains 510 Message Frames and the PostQ is empty after initialization

The steps to transport a block of data from a local EP to a remote EP are:
◆ The block of data is in the code and data space of the local EP domain.
◆ Local EP reads from the inbound FreeQ of the remote EP to get a Message Frame. (Read the

address 0x84100040)
◆ The Message Frame 0x81101000 is returned to the local EP. The Message Frame address is in the

system domain. The local EP translated the address to its outbound address window 0x84101000.

Message
Frame
Buffers

Message Unit
0100 1000

Inbound Queue Port0100 0040
0000 00000

0100 0000

0110 0000

FFFF FFFF

Remote EP Domain

FFFF E310

FFFF E380
FFFF E360

FFFF E36C

Inbound FreeQ head pointer

Inbound PostQ tail pointer

Inbound Window

Message Unit
Registers

Code and
Data Space

....
14 of 20 December 19, 2007

IDT Application Note AN-531

Notes

◆ The local EP sets up its local DMA engine to transfer the block of data from its local code and data

space to the address 0x84101000. (The IOP80333 allows an address to be specified as in the
system or local domain. The actual implementation sets up the DMA engine to transfer data directly
to the address 0x81101000 and hence the local outbound address translation unit is bypassed.)

◆ As the address 0x84101000 is within the outbound address window, the address translation unit
forwards the DMA request to the system domain. The address is translated to 0x81101000.

◆ The remote EP detects that the memory request address is 0x81101000 which falls into its inbound
address window. The address translation unit on the remote EP forwards the memory request to its
local bus. The address is translated to 0x01001000.

◆ When the DMA transfer is completed, the local EP adds the Message Frame 0x81101000 to the
inbound PostQ of the remote EP. It writes 0x81101000 (system domain address) to the address
0x84100040 (remote EP’s inbound PostQ port address in local address domain).

◆ When remote EP detects that the inbound PostQ is not empty, it reads the location pointed to by the
tail pointer of the inbound PostQ to remove the Message Frame from the inbound PostQ.

◆ The remote EP allocates a buffer in its code and data space and copies the data from the Message
Frame to the newly allocated buffer. The data buffer is posted to the appropriate application for
further processing.

◆ The Message Frame 0x0100 1000 is returned to the inbound FreeQ by writing 0x81101000 (system
domain address) to the location pointed to by the head pointer of the inbound FrereQ.

From a local EP to a remote RP
A local EP uses its outbound queue structure to transfer data from itself to the remote RP. An outbound

address translation window is not set up in the local EP. The local EP always uses its local DMA engine to
access memory in the remote RP.

During system initialization, the software that runs on the RP allocates a block of memory in the RP’s
local data space. This is the system domain address window. In this example, this window is between
0x71000000 and 0x71010000. A total of 64 KBytes of memory is reserved for data transfer Message
Frames. The RP needs to allocate a separate block of memory for Message Frames for each EP in the
system. The remote RP divides its memory into 32 Message Frames. It then adds these Message Frames
to the outbound FreeQ of the local EP by writing to the outbound queue port of that local EP.

The steps to transport a block of data from the local EP to a remote RP are:
◆ The block of data is in the code and data space of the local EP domain.
◆ The local EP reads from the local outbound FreeQ to get a Message Frame. (Read from the

location pointed to by the tail pointer of the FreeQ.)
◆ The Message Frame 0x7100 0000 is returned to the local EP.
◆ The local EP sets up its local DMA engine to transfer the block of data from its local data space to

the address 0x7100 0000. The destination address is configured to be in the system domain.
◆ When the DMA transfer is completed, the local EP adds the Message Frame (0x7100 0000) to its

outbound PostQ.
◆ The remote RP reads from the local EP’s outbound PostQ to get the Message Frame. (0x7100

0000).
◆ The remote RP allocates a buffer in its code and data space. It then copies the data from the

Message Frame to the newly allocated buffer. The data buffer is posted to the appropriate
application for further processing.

◆ The remote RP returns the Message Frame 0x7100 0000 to the outbound FreeQ of the local EP.

From a Local RP to a Remote EP
The local RP uses the inbound queue structure of a remote EP to transfer data from a local RP to the

remote EP. The procedure is the same as transferring data from a local EP to a remote EP. However, the
DMA engine is normally not implemented on the RP to transfer data from its local memory to an external
PCIe device. The RP has to copy the data from its local memory to the Message Frame in the remote EP.
15 of 20 December 19, 2007

IDT Application Note AN-531

Notes
 Software Modules
All system interconnect system software components are implemented as Linux loadable modules.

There are five and six Linux loadable modules for the RP and the IOP80333 EPs, respectively. The
modules for the RP are idt-mp-i386-msg.ko, idt-mp-i386-arch.ko, idt-mp-i386-iop333.ko, idt-mp-i386-eth.ko,
and idt-mp-i386-raw.ko. The modules for the IOP80333 EPs are idt-mp-iop333-msg.ko, idt-mp-iop333-
arch.ko, idt-mp-iop333-rp.ko, idt-mp-iop333-iop333.ko, idt-mp-iop333-eth.ko, and idt-mp-iop333-raw.ko.
The idt-mp-i386-msg.ko and idt-mp-iop333-msg.ko are the message frame modules; the idt-mp-i386-
arch.ko and idt-mp-iop333-arch.ko are the local architecture modules; the idt-mp-i386-iop333.ko, idt-mp-
iop333-rp.ko, and idt-mp-iop333-iop333.ko are the transport modules; the idt-mp-i386-eth.ko and idt-mp-
iop333-eth.ko are the virtual Ethernet modules; and the idt-mp-i386-raw.ko and idt-mp-iop333-raw.ko are
the raw data transfer modules. Refer to Figure 18 for their relative positions in the software architecture.
The Application Programming Interface (API) for the modules is described in a separated document[6].

Please note that even though the statistic function is conceptually a function service, it is implemented in
the message service module. More specifically, this function is part of the idt-mp-i386-msg.ko and idt-mp-
iop333-msg.ko Linux loadable modules. This function sends and receives high priority messages in order to
have up-to-date statistical information. Also note that even though the RP and the IOP80333 EPs have
separate binary Linux loadable modules, some of them share the same source files. More specifically, idt-
mp-i386-msg.ko, idt-mp-i386-eth.ko, and idt-mp-i386-raw.ko share the same source files with idt-mp-
iop333-msg.ko, idt-mp-iop333-eth.ko, and idt-mp-iop333-raw.ko, respectively.

Figure 18 Software Modules and Device Drivers

Function Service Layer
There are currently two function services: the virtual Ethernet and the raw data transfer. The RP and all

EPs share the same source files.

User Space

Kernel Space

Function
Service
Layer

Message
Frame Service

Layer

Transport
Service
Layer

Ethernet
Device Driver

Raw Data
Device Driver

Statistic
Device Driver

Statistic
Application

Raw Data
Configuration
Application

PCIe Interface

IOP80333
Transport Module

Message Frame Module Local
Architecture

Module
16 of 20 December 19, 2007

IDT Application Note AN-531

Notes
 Virtual Ethernet Device Driver
The virtual Ethernet module simulates a virtual Ethernet interface mp0. The module initialization function

registers the virtual Ethernet interface mp0 with the Linux kernel and then registers itself with the message
module. The MAC address of the virtual Ethernet interface may be specified either on the command line
when the module is loaded or when a locally administered MAC address is generated using the linux func-
tion call random_ether_address(). A MAC address to destination peer ID table is maintained in the driver.
The table is initially empty. Whenever an Ethernet packet is received, the source MAC address and peer ID
of the sender is added to the table. When a packet is sent, the destination MAC address is looked up in the
MAC address to destination peer ID table. If there is a match, the packet is sent to the corresponding peer
ID. If no match occurs, the packet is sent to the “broadcast” peer ID. The message module sends a copy of
the packet to each peer in the system. In other words, the packet is sent to all other peers in the system.

 Its transmit function allocates a mp_frame data structure, sets up the virtual Ethernet function header,
sets up data fragments, looks up the destination MAC address for destination peer ID, then passes the
frame down to the message service for transmission.

Its receive function extracts the virtual Ethernet function header, allocates a Linux sk_buff data structure,
sets up the sk_buff fields, then calls mp_frame_sync to transfer the data. When the data transfer is
completed, its callback function updates the MAC address to destination peer ID Table with the source MAC
address and the source peer ID, passes the sk_buff to the Linux kernel, then releases the mp_frame data
structure.

Raw Data Service Module
The raw data transfer module blindly sends the data it receives to the peer specified by the user and

utilizes the new Linux 2.6 sysfs feature for interfacing with the user. The module initialization function sets
up data buffers, registers itself with the multi-peer message module, then sets up the subsystem attributes
in the sysfs for interfacing with the user. The user writes the peer ID to which the received data should be
forwarded into the ‘forward’ attribute. To generate the data, the user writes the number of frames into the
‘count’ attribute, writes the data content into the ‘buffer’ attribute, then writes the length of the data in bytes
into the ‘send’ attribute. When the ‘send’ attribute is written, the corresponding store function allocates a
mp_frame data structure, sets up the mp_frame data structure with the length specified, clones the frame
with the number specified in the ‘count’ attribute minus one, then passes the frames down to message
service for transmission. Its receive function allocates a buffer, then calls mp_frame_sync to transfer the
data. When the data transfer is completed, its callback function allocates a new mp_frame data structure,
sets up the mp_frame data structure, then passes the frames down to message service for transfer to the
destination specified by the ‘forward’ attribute.

Message Layer Service
The Message Layer is the centerpiece of the multi-peer system. It connects and multiplexes the function

and transport services to transfer data frames between peers.

Message Module
The message module provides the interface for the function and transport modules to register them-

selves and transfer data frames. The module initialization function initializes the peer management related
data structures, creates the mp workqueue for processing peer notification messages, and registers the mp
subsystem with the Linux sysfs system. On the RP, when a transport service adds a new peer, the message
service sends a notification of the new peer to each existing peer and a notification of each existing peer to
this new peer. On the EPs, when a peer notification is received, the message service notifies the corre-
sponding transport service of the new peer. In addition, when a peer is added, the message service creates
a peer ID attribute in the sysfs to represent the known peers and interface with the user. When a function
service sends a data frame, the message service looks up the destination peer type and passes the data
frame to the corresponding transport service to transfer the data to the destination peer. When a transport
service receives a data frame, the message service peeks into the message header to determine which
function service should receive the data frame and passes the data frame accordingly.
17 of 20 December 19, 2007

IDT Application Note AN-531

Notes
 The message module can send messages to all other peers in the system. When the destination peer ID
is unknown or “Broadcast”, a message is duplicated and sent to each peer in the system.

Architecture Module
The architecture module encapsulates the common architecture-specific functions, such as DMA

transfer and address space conversion routines. Each different type of RP and EP has its own architecture-
specific module and does not share source files. Depending on the capability of the hardware, the DMA
transfer routines may utilize the hardware DMA engine or simulate the DMA transfer with memory copies.
The address space conversion routines convert addresses between virtual, physical, bus, and PCI
addresses.

Transport Service Layer
The Transport service is responsible for detecting and setting up the hardware, managing the frame

buffers, and initiating the actual data transfers.

IOP80333 Transport Module
There are two separate IOP80333 transport modules which do not share source files. One module runs

on the RP and the other runs on the IOP80333 EPs.
The IOP80333 transport module running on the RP is implemented as a generic PCI driver. The module

initialization function initializes the transport data structure, registers itself with the message service, then
registers the PCI driver with the Linux kernel. When the Linux kernel detects an IOP80333, the probe func-
tion of the PCI driver is called. The probe function allocates and initializes the peer related data structures,
enables the PCI device, requests the memory and interrupt resources associated with the PCI device, then
communicates with the RP transport module running on the IOP80333 to setup the memory windows and
data frame buffers.

The module initialization function of the IOP80333 transport module running on the IOP80333 EPs
initializes the transport data structure and registers itself with the message service. When the message
service on the IOP80333 EPs receives an IOP80333 peer-add notification, it calls the peer_add function of
the IOP80333 transport service. The peer_add function initializes and registers the peer data structure and
makes the new peer available for data transfers.

The transmit function is called by the message service to transmit a data frame to an IOP80333 EP for
both modules running on the RP and the EPs. The receive function of the IOP80333 transport service
running on the RP is triggered from the interrupt handler when an IOP80333 EP sends a data frame to the
RP. Note that there is no receive function in the IOP80333 transport running on the EPs. The data reception
is handled by the RP transport module on the IOP80333 EPs.

RP Transport Module
The RP transport module runs on the IOP80333 EPs. The module initialization function initializes the

transport data structure, registers itself with the message service, and initializes the hardware. It then
communicates with the IOP80333 transport module running on the RP to setup the memory windows and
data frame buffers. The transmit function is called by the message service to transmit a data frame to the
RP. The receive function is triggered by the interrupt handler when any RP or EP sends a data frame to this
IOP80333 EP.

System Initialization
Before the system is powered up, all EPs should be configured so that all accesses to their PCI configu-

ration spaces are re-tried. Once the system is powered up, the PC BIOS running on the RP and all the boot-
loaders running on the EPs start scanning and initializing the hardware at the same time. If the PCI BIOS
running on the RP is faster than the boot-loader running on an EP, it will keep re-trying an EP configuration
space access until the EP boot-loader clears the PCI configuration access retry condition. Once the EP
configuration space access retry condition is cleared, PC BIOS continues the PCI bus scanning and
resource assignment, and finally boots the x86 Linux kernel.
18 of 20 December 19, 2007

IDT Application Note AN-531

Notes
 The Intel IOP80333 boot-loader sets up the Inbound ATU Limit Register 0 of the Address Translation
Unit(IALR0) to request 1 MB of non-prefetchable memory mapping through Base Address Register 0 of the
PCI Configuration Space(BAR0) of the EP from the RP. It also sets up inbound memory window 3 to map all
local memory, outbound memory window 0, and outbound I/O window for the private PCI devices on the
secondary PCI bus. The boot-loader then clears the PCI configuration space access retry conditions,
continues the rest of the hardware initialization and finally boots the Intel IOP80333 Linux kernel.

The Intel IOP80333 Linux kernel initializes the Intel IOP80333 hardware and the private PCI devices.
The Intel IOP80333 local message frame service inspects the IALR0 to determine the memory window
requested through BAR0, allocates a corresponding memory buffer, and updates Inbound ATU Translate
Value Register 0 of the Address Translation Unit(IATVR0) to point to the allocated buffer. It then initializes
the message unit, populates the inbound free queue, and finally updates the Outbound Message Register 0
of the Message Unit(OMR0) with value 4096, the number of message queue entries configured. The Intel
IOP80333 local inbound transport service initializes the message unit interrupts for inbound messages. The
Intel IOP80333 local to RP transport service registers itself with the message frame service for outbound
messages to the RP. The Intel IOP80333 local DMA service initializes the DMA channels and registers itself
to provide low-level data transport services through DMA.

When the x86 Linux kernel detects an Intel IOP80333 device, the probe routine in the Intel IOP80333
PCI device driver is invoked. The probe routine initializes the new device data structure and reads the
OMR0 of the newly discovered IOP80333 device. If the OMR0 is non-zero, the probe routine calls the Intel
IOP80333 message queue initialization routine to populate the Intel IOP80333 outbound free queue up to
the maximum number of entries indicated in the OMR0. It then updates the Inbound Message Register 0 of
the Message Unit(IMR0) with the Intel IOP80333 device’s ID, which encodes the bus, device, and function
number of the device. If the OMR0 is zero, the Intel IOP80333 Linux is not ready and the probe routine
returns immediately. The message queue initialization and IMR0 update is postponed until the Intel
IOP80333 Linux updates the OMR0.

After the Intel IOP80333 outbound free queue is populated, the Intel IOP80333 device driver running on
the RP notifies the message frame service of the newly discovered device. The message frame service is
then responsible for notifying the other existing peers of the new device through their corresponding trans-
port services. It also notifies the new device of the other existing peers through the new device’s transport
service. The notification should include the ID, architecture, and location in system memory map of the
devices.

When the Intel IOP80333 hardware detects an IMR0 update, the Intel IOP80333 local inbound transport
service would be notified through the associated interrupt. The Intel IOP80333 local inbound transport
service updates the Outbound Memory Window Translate Value Register 1(OMWTVR1) and Outbound
Upper Memory Window Translate Value Register 1(OUMWTVR1) of the Address Translation Unit with the
64 MB aligned address derived from the value assigned to the BAR0 register. It then notifies the message
frame service to add the RP as its peer.

At this point, peer communication between the RP and the new EP is fully initialized and functional. The
function services on both RP and EP can start sending and receiving data to each other. When another Intel
IOP80333 device is discovered and initialized, the RP sends a notification message to this EP. The local EP
inbound transport service passes the notification to the message frame service. The message frame
service creates a new Intel IOP80333 peer and associates the new peer with the Intel IOP80333 transport
service based on the type of the new peer indicated in the notification message, if the Intel IOP80333
transport service is already registered. Otherwise, it delays the association until the Intel IOP80333
transport service registers itself with the message frame service. The message frame service then notifies
the function services of the new peer. Since the RP adds the new peer only after the communication
between the RP and the new peer is initialized, the Intel IOP80333 transport service can start sending
messages to the new peer when it is notified of the new peer’s existence.
19 of 20 December 19, 2007

IDT Application Note AN-531

Notes
 Summary
The software architecture to support PCIe System Interconnect has been presented in this document.

This software has been implemented and is working under Linux with the x86 CPU as the Root Processor
and the IOP80333 as the Endpoint Processors. The software source code is available from IDT.

The software is implemented as device drivers and modules running in the Linux Kernel space. There
are three layers in the software to separate the different functions of the software and allows maximum
reuse of the software. The Function Service Layer is the upper layer. It provides the function service that is
visible to the Operation System and upper layer application. Multiple function services have been imple-
mented in the current release of the software: Ethernet Function Service provides a virtual ethernet inter-
face to the system, the Raw Data Function Service provides transfer of user data between EPs and RP, and
the Statistic Function Service provides the function to collect traffic statistics for management and diag-
nostic purposes. The Message Frame Layer contains the Message Frame Service which provides a
common message encapsulation and decapsulation layer to all the function services. It also notifies the
newly discovered Endpoint Processors to all other Endpoint Processors. The Transport Service Layer deals
with the actual data transport between Endpoint Processors and Root Processors using the PCIe interface.
The transport service is Endpoint Processor specific. This version of the software supports the x86 as the
Root Processor and the IOP80333 as the Endpoint Processor.

Apart from inter-processor communication application, this software demonstrates that IO sharing can
now be implemented using a standard PCIe switch and off the shelf IO processors. The sharing of a single
Ethernet interface by multiple Endpoint Processors and the Root Processor has been implemented and
functions properly.

The address translation unit is used to isolate and provide a bridge between different PCIe address
domains. The freeQ and post Q structures are used as part of the message transport protocol.

This software release lays down the foundation to build more complex systems using the PCIe interface
as the system interconnect. The software follows a modular design which allows the addition of function
services and other Endpoint Processors support without making changes to existing software modules.
Complex systems such as embedded computing, blade servers supporting IO sharing, communication
systems and storage system can be built today using PCIe as the system interconnect.

Reference
[1] Enabling Multi-peer Support with a Standard-Based PCI Express multi-port Switch White Paper,

Kwok Kong, IDT.
[2] Intel 80333 I/O Processor Developer’s Manual, Document Number 305432001US, Intel
[3] IDT 89EBPES64H16 Evaluation Board Manual (Eval Board: 18-624-000).
[4] IDT 89HPES64H16 PCI Express User Manual.
[5] Intel IQ80333 I/O Processor Customer Reference Board Manual, September 2005.Document

Number: 306690003US.
[6] System Interconnect Software Programming Interface, Steve Shih, IDT.
20 of 20 December 19, 2007

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most
up-to-date version of a document, or your nearest sales
office, please visit www.renesas.com/contact-us/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1)
selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an
application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is
granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims
responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses,
or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and
Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise
alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01 Jan 2024)

© 2024 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/contact-us
https://www.renesas.com

	Introduction
	System Architecture
	Root Complex Processor
	PCIe Switch
	Endpoint Processor

	General Software Architecture
	RP Software Architecture
	EP Software Architecture

	Application Examples
	Address Translation
	Inbound Address Translation
	Outbound Address Translation

	Data Transport
	Inbound Queues
	Outbound Queues
	Data Movement Examples

	Software Modules
	Function Service Layer
	Message Layer Service
	Transport Service Layer

	System Initialization
	Summary
	Reference

