forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
EmptyTensor.cpp
455 lines (407 loc) · 14.7 KB
/
EmptyTensor.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
#define TORCH_ASSERT_NO_OPERATORS
#include <ATen/EmptyTensor.h>
#include <ATen/detail/CUDAHooksInterface.h>
#include <ATen/Context.h>
#include <ATen/detail/PrivateUse1HooksInterface.h>
#include <c10/core/CPUAllocator.h>
#include <c10/util/safe_numerics.h>
#include <limits>
namespace at::detail {
namespace {
c10::Allocator* GetCPUAllocatorMaybePinned(bool pin_memory) {
if (pin_memory) {
// NB: This is not quite right, if you somehow had both CUDA and PrivateUse1 initialized
// in the same PyTorch build, you would ONLY ever get the CUDA pinned memory allocator.
// To properly support this, see https://github.com/pytorch/pytorch/issues/14560
if (at::globalContext().hasCUDA()) {
return at::detail::getCUDAHooks().getPinnedMemoryAllocator();
} else if(at::isPrivateUse1HooksRegistered()) {
return at::GetPrivateUse1HooksInterface()->getPinnedMemoryAllocator();
} else {
TORCH_CHECK(false, "Need to provide pin_memory allocator to use pin memory.")
}
}
return c10::GetCPUAllocator();
}
constexpr uint64_t storage_max() {
// int64_t and size_t are used somewhat inconsistently throughout ATen.
// To be safe, storage size calculations must fit in both types.
constexpr auto int64_max = static_cast<uint64_t>(
std::numeric_limits<int64_t>::max());
constexpr auto size_max = static_cast<uint64_t>(
std::numeric_limits<size_t>::max());
return std::min(int64_max, size_max);
}
inline void raise_warning_for_complex_half(ScalarType dtype) {
if (dtype == kComplexHalf) {
TORCH_WARN_ONCE(
"ComplexHalf support is experimental and many operators don't support it yet.");
}
}
} // namespace (anonymous)
size_t computeStorageNbytesContiguous(
IntArrayRef sizes,
size_t itemsize_bytes,
size_t storage_offset
) {
// Ignore overflow checks on mobile
#ifndef C10_MOBILE
uint64_t size = 1;
bool overflowed = c10::safe_multiplies_u64(sizes, &size);
overflowed |= c10::add_overflows(size, storage_offset, &size);
overflowed |= c10::mul_overflows(size, itemsize_bytes, &size);
overflowed |= size > storage_max();
TORCH_CHECK(!overflowed,
"Storage size calculation overflowed with sizes=", sizes);
return static_cast<size_t>(size);
#else
const auto numel = c10::multiply_integers(sizes);
return itemsize_bytes * (storage_offset + numel);
#endif
}
size_t computeStorageNbytes(
IntArrayRef sizes,
IntArrayRef strides,
size_t itemsize_bytes,
size_t storage_offset
) {
TORCH_CHECK(
sizes.size() == strides.size(),
"dimensionality of sizes (",
sizes.size(),
") must match dimensionality of strides (",
strides.size(),
")");
// Ignore overflow checks on mobile
#ifndef C10_MOBILE
// size of the underlying storage is 1 bigger than the offset
// of the last element according to stride
uint64_t size = storage_offset + 1;
bool overflowed = false;
for (const auto i : c10::irange(sizes.size())) {
if (sizes[i] == 0) {
return 0;
}
uint64_t strided_size;
overflowed |= c10::mul_overflows(strides[i], sizes[i] - 1, &strided_size);
overflowed |= c10::add_overflows(size, strided_size, &size);
}
overflowed |= c10::mul_overflows(size, itemsize_bytes, &size);
overflowed |= size > storage_max();
TORCH_CHECK(!overflowed,
"Storage size calculation overflowed with sizes=",
sizes, " and strides=", strides);
return static_cast<size_t>(size);
#else
// size of the underlying storage is 1 bigger than the offset
// of the last element according to stride
uint64_t size = 1;
for (const auto i : c10::irange(sizes.size())) {
if (sizes[i] == 0) {
return 0;
}
size += strides[i] * (sizes[i] - 1);
}
return itemsize_bytes * (storage_offset + size);
#endif
}
SymInt computeStorageNbytesContiguous(
SymIntArrayRef sizes,
const SymInt& itemsize_bytes,
const SymInt& storage_offset
) {
const auto numel = c10::multiply_integers(sizes);
return itemsize_bytes * (storage_offset + numel);
}
// not including mobile-only macros in this function,
// since mobile shouldn't be using symints.
SymInt computeStorageNbytes(
SymIntArrayRef sizes,
SymIntArrayRef strides,
const SymInt& itemsize_bytes,
const SymInt& storage_offset
) {
TORCH_CHECK(
sizes.size() == strides.size(),
"dimensionality of sizes (",
sizes.size(),
") must match dimensionality of strides (",
strides.size(),
")");
// size of the underlying storage is 1 bigger than the offset
// of the last element according to stride
SymInt size = 1;
for (const auto i : c10::irange(sizes.size())) {
if (sizes[i] == 0) {
return 0;
}
size += strides[i] * (sizes[i] - 1);
}
return itemsize_bytes * (storage_offset + size);
}
template <typename T>
TensorBase _empty_generic(
ArrayRef<T> size,
c10::Allocator* allocator,
c10::DispatchKeySet ks,
ScalarType scalar_type,
c10::optional<c10::MemoryFormat> memory_format_opt) {
at::detail::check_size_nonnegative(size);
at::detail::raise_warning_for_complex_half(scalar_type);
caffe2::TypeMeta dtype = scalarTypeToTypeMeta(scalar_type);
auto size_bytes = computeStorageNbytesContiguous(size, dtype.itemsize());
auto storage_impl = c10::make_intrusive<StorageImpl>(
c10::StorageImpl::use_byte_size_t(),
size_bytes,
allocator,
/*resizeable=*/true);
auto tensor = detail::make_tensor_base<TensorImpl>(
std::move(storage_impl), ks, dtype);
// Default TensorImpl has size [0]
// NB: test for meta dispatch key to avoid guarding on zero-ness
if (ks.has(c10::DispatchKey::Meta) || size.size() != 1 || size[0] != 0) {
tensor.unsafeGetTensorImpl()->generic_set_sizes_contiguous(size);
}
if (memory_format_opt.has_value()) {
// Restriding a just-created empty contiguous tensor does nothing.
if (*memory_format_opt != MemoryFormat::Contiguous) {
tensor.unsafeGetTensorImpl()->empty_tensor_restride(*memory_format_opt);
}
}
return tensor;
}
TensorBase empty_generic(
IntArrayRef size,
c10::Allocator* allocator,
c10::DispatchKeySet ks,
ScalarType scalar_type,
c10::optional<c10::MemoryFormat> memory_format_opt) {
return _empty_generic(size, allocator, ks, scalar_type, memory_format_opt);
}
template <typename T>
TensorBase _empty_strided_generic(
T size,
T stride,
c10::Allocator* allocator,
c10::DispatchKeySet ks,
ScalarType scalar_type) {
at::detail::check_size_nonnegative(size);
at::detail::raise_warning_for_complex_half(scalar_type);
caffe2::TypeMeta dtype = scalarTypeToTypeMeta(scalar_type);
auto size_bytes = computeStorageNbytes(size, stride, dtype.itemsize());
auto storage_impl = c10::make_intrusive<StorageImpl>(
c10::StorageImpl::use_byte_size_t(),
size_bytes,
allocator,
/*resizeable=*/true);
auto tensor = detail::make_tensor_base<TensorImpl>(
std::move(storage_impl), ks, dtype);
tensor.unsafeGetTensorImpl()->set_sizes_and_strides(size, stride);
return tensor;
}
TensorBase empty_strided_generic(
IntArrayRef size,
IntArrayRef stride,
c10::Allocator* allocator,
c10::DispatchKeySet ks,
ScalarType scalar_type) {
return _empty_strided_generic<IntArrayRef>(size, stride, allocator, ks, scalar_type);
}
TensorBase empty_strided_symint_generic(
SymIntArrayRef size,
SymIntArrayRef stride,
c10::Allocator* allocator,
c10::DispatchKeySet ks,
ScalarType scalar_type) {
return _empty_strided_generic<SymIntArrayRef>(size, stride, allocator, ks, scalar_type);
}
TensorBase empty_cpu(IntArrayRef size, ScalarType dtype, bool pin_memory,
c10::optional<c10::MemoryFormat> memory_format_opt) {
auto allocator = GetCPUAllocatorMaybePinned(pin_memory);
constexpr c10::DispatchKeySet cpu_ks(c10::DispatchKey::CPU);
return empty_generic(size, allocator, cpu_ks, dtype, memory_format_opt);
}
TensorBase empty_cpu(
IntArrayRef size,
c10::optional<ScalarType> dtype_opt,
c10::optional<Layout> layout_opt,
c10::optional<Device> device_opt,
c10::optional<bool> pin_memory_opt,
c10::optional<c10::MemoryFormat> memory_format_opt) {
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(device_or_default(device_opt).type() == DeviceType::CPU);
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(layout_or_default(layout_opt) == Layout::Strided);
auto pin_memory = pinned_memory_or_default(pin_memory_opt);
auto dtype = dtype_or_default(dtype_opt);
return empty_cpu(size, dtype, pin_memory, memory_format_opt);
}
TensorBase empty_cpu(
IntArrayRef size, const TensorOptions &options) {
return at::detail::empty_cpu(
size,
optTypeMetaToScalarType(options.dtype_opt()),
options.layout_opt(),
options.device_opt(),
options.pinned_memory_opt(),
options.memory_format_opt());
}
TensorBase empty_strided_cpu(IntArrayRef size, IntArrayRef stride,
ScalarType dtype, bool pin_memory) {
auto allocator = at::detail::GetCPUAllocatorMaybePinned(pin_memory);
constexpr c10::DispatchKeySet cpu_ks(c10::DispatchKey::CPU);
return at::detail::empty_strided_generic(
size, stride, allocator, cpu_ks, dtype);
}
TensorBase empty_strided_cpu(
IntArrayRef size,
IntArrayRef stride,
c10::optional<ScalarType> dtype_opt,
c10::optional<Layout> layout_opt,
c10::optional<Device> device_opt,
c10::optional<bool> pin_memory_opt) {
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(device_or_default(device_opt).type() == DeviceType::CPU);
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(layout_or_default(layout_opt) == Layout::Strided);
auto pin_memory = pinned_memory_or_default(pin_memory_opt);
auto dtype = dtype_or_default(dtype_opt);
return at::detail::empty_strided_cpu(size, stride, dtype, pin_memory);
}
TensorBase empty_strided_cpu(
IntArrayRef size,
IntArrayRef stride,
const TensorOptions &options) {
return at::detail::empty_strided_cpu(
size,
stride,
optTypeMetaToScalarType(options.dtype_opt()),
options.layout_opt(),
options.device_opt(),
options.pinned_memory_opt());
}
// The meta allocator ignores whatever allocation is requested and always
// gives you nullptr
struct MetaAllocator final : public at::Allocator {
MetaAllocator() = default;
~MetaAllocator() override = default;
static void deleter(void* const pointer) {
TORCH_INTERNAL_ASSERT(!pointer);
}
DataPtr allocate(const size_t nbytes) const override {
return {nullptr, nullptr, &deleter, at::Device(DeviceType::Meta)};
}
DeleterFnPtr raw_deleter() const override {
return deleter;
}
void copy_data(void* dest, const void* src, std::size_t count) const final {}
};
static MetaAllocator g_meta_alloc;
REGISTER_ALLOCATOR(kMeta, &g_meta_alloc);
TensorBase empty_meta(IntArrayRef size, ScalarType dtype,
c10::optional<c10::MemoryFormat> memory_format_opt) {
auto *allocator = GetAllocator(kMeta);
constexpr c10::DispatchKeySet meta_dks(c10::DispatchKey::Meta);
return at::detail::empty_generic(
size, allocator, meta_dks, dtype, memory_format_opt);
}
TensorBase empty_meta(
IntArrayRef size,
c10::optional<ScalarType> dtype_opt,
c10::optional<Layout> layout_opt,
c10::optional<Device> device_opt,
c10::optional<bool> pin_memory_opt,
c10::optional<c10::MemoryFormat> memory_format_opt
) {
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(device_or_default(device_opt).type() == DeviceType::Meta);
// NB: because there is no SparseMeta (yet), non-strided layout is
// exerciseable
TORCH_CHECK_NOT_IMPLEMENTED(
layout_or_default(layout_opt) == Layout::Strided,
"non-strided meta tensors not supported yet"
);
auto dtype = dtype_or_default(dtype_opt);
return empty_meta(size, dtype, memory_format_opt);
}
TensorBase empty_symint_meta(
SymIntArrayRef size,
c10::optional<ScalarType> dtype_opt,
c10::optional<Layout> layout_opt,
c10::optional<Device> device_opt,
c10::optional<bool> pin_memory_opt,
c10::optional<c10::MemoryFormat> memory_format_opt
) {
auto *allocator = GetAllocator(kMeta);
constexpr c10::DispatchKeySet ks(c10::DispatchKey::Meta);
auto scalar_type = dtype_or_default(dtype_opt);
return _empty_generic(size, allocator, ks, scalar_type, memory_format_opt);
}
TensorBase empty_meta(
IntArrayRef size, const TensorOptions &options) {
return at::detail::empty_meta(
size,
optTypeMetaToScalarType(options.dtype_opt()),
options.layout_opt(),
options.device_opt(),
options.pinned_memory_opt(),
options.memory_format_opt());
}
TensorBase empty_strided_meta(IntArrayRef size, IntArrayRef stride,
ScalarType dtype) {
auto *allocator = GetAllocator(kMeta);
constexpr c10::DispatchKeySet meta_dks(c10::DispatchKey::Meta);
return at::detail::empty_strided_generic(
size, stride, allocator, meta_dks, dtype);
}
TensorBase empty_strided_meta(
IntArrayRef size,
IntArrayRef stride,
c10::optional<ScalarType> dtype_opt,
c10::optional<Layout> layout_opt,
c10::optional<Device> device_opt,
c10::optional<bool> pin_memory_opt) {
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(device_or_default(device_opt).type() == DeviceType::Meta);
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(layout_or_default(layout_opt) == Layout::Strided);
auto dtype = dtype_or_default(dtype_opt);
return at::detail::empty_strided_meta(size, stride, dtype);
}
TensorBase empty_strided_meta(
IntArrayRef size,
IntArrayRef stride,
const TensorOptions &options) {
return at::detail::empty_strided_meta(
size,
stride,
optTypeMetaToScalarType(options.dtype_opt()),
options.layout_opt(),
options.device_opt(),
options.pinned_memory_opt());
}
TensorBase empty_strided_symint_meta(SymIntArrayRef size, SymIntArrayRef stride,
ScalarType dtype) {
auto *allocator = GetAllocator(kMeta);
constexpr c10::DispatchKeySet meta_dks(c10::DispatchKey::Meta);
return at::detail::empty_strided_symint_generic(
size, stride, allocator, meta_dks, dtype);
}
TensorBase empty_strided_symint_meta(
SymIntArrayRef size,
SymIntArrayRef stride,
c10::optional<ScalarType> dtype_opt,
c10::optional<Layout> layout_opt,
c10::optional<Device> device_opt,
c10::optional<bool> pin_memory_opt) {
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(device_or_default(device_opt).type() == DeviceType::Meta);
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(layout_or_default(layout_opt) == Layout::Strided);
auto dtype = dtype_or_default(dtype_opt);
return at::detail::empty_strided_symint_meta(size, stride, dtype);
}
TensorBase empty_strided_symint_meta(
SymIntArrayRef size,
SymIntArrayRef stride,
const TensorOptions &options) {
return at::detail::empty_strided_symint_meta(
size,
stride,
optTypeMetaToScalarType(options.dtype_opt()),
options.layout_opt(),
options.device_opt(),
options.pinned_memory_opt());
}
} // namespace at::detail