forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
NumericUtils.h
194 lines (165 loc) · 4.66 KB
/
NumericUtils.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
#pragma once
#ifdef __HIPCC__
#include <hip/hip_runtime.h>
#endif
#include <c10/macros/Macros.h>
#include <c10/util/BFloat16.h>
#include <c10/util/Float8_e4m3fn.h>
#include <c10/util/Float8_e5m2.h>
#include <c10/util/Half.h>
#include <c10/util/complex.h>
#include <cmath>
#include <type_traits>
namespace at {
// std::isnan isn't performant to use on integral types; it will
// (uselessly) convert to floating point and then do the test.
// This function is.
template <
typename T,
typename std::enable_if<std::is_integral<T>::value, int>::type = 0>
inline C10_HOST_DEVICE bool _isnan(T /*val*/) {
return false;
}
template <
typename T,
typename std::enable_if<std::is_floating_point<T>::value, int>::type = 0>
inline C10_HOST_DEVICE bool _isnan(T val) {
#if defined(__CUDACC__) || defined(__HIPCC__)
return ::isnan(val);
#else
return std::isnan(val);
#endif
}
template <
typename T,
typename std::enable_if<c10::is_complex<T>::value, int>::type = 0>
inline C10_HOST_DEVICE bool _isnan(T val) {
return std::isnan(val.real()) || std::isnan(val.imag());
}
template <
typename T,
typename std::enable_if<std::is_same<T, at::Half>::value, int>::type = 0>
inline C10_HOST_DEVICE bool _isnan(T val) {
return at::_isnan(static_cast<float>(val));
}
template <
typename T,
typename std::enable_if<std::is_same<T, at::BFloat16>::value, int>::type =
0>
inline C10_HOST_DEVICE bool _isnan(at::BFloat16 val) {
return at::_isnan(static_cast<float>(val));
}
inline C10_HOST_DEVICE bool _isnan(at::BFloat16 val) {
return at::_isnan(static_cast<float>(val));
}
template <
typename T,
typename std::enable_if<std::is_same<T, at::Float8_e5m2>::value, int>::
type = 0>
inline C10_HOST_DEVICE bool _isnan(T val) {
return val.isnan();
}
template <
typename T,
typename std::enable_if<std::is_same<T, at::Float8_e4m3fn>::value, int>::
type = 0>
inline C10_HOST_DEVICE bool _isnan(T val) {
return val.isnan();
}
// std::isinf isn't performant to use on integral types; it will
// (uselessly) convert to floating point and then do the test.
// This function is.
template <
typename T,
typename std::enable_if<std::is_integral<T>::value, int>::type = 0>
inline C10_HOST_DEVICE bool _isinf(T /*val*/) {
return false;
}
template <
typename T,
typename std::enable_if<std::is_floating_point<T>::value, int>::type = 0>
inline C10_HOST_DEVICE bool _isinf(T val) {
#if defined(__CUDACC__) || defined(__HIPCC__)
return ::isinf(val);
#else
return std::isinf(val);
#endif
}
inline C10_HOST_DEVICE bool _isinf(at::Half val) {
return at::_isinf(static_cast<float>(val));
}
inline C10_HOST_DEVICE bool _isinf(at::BFloat16 val) {
return at::_isinf(static_cast<float>(val));
}
inline C10_HOST_DEVICE bool _isinf(at::Float8_e5m2 val) {
return val.isinf();
}
inline C10_HOST_DEVICE bool _isinf(at::Float8_e4m3fn val) {
return false;
}
template <typename T>
C10_HOST_DEVICE inline T exp(T x) {
static_assert(
!std::is_same<T, double>::value,
"this template must be used with float or less precise type");
#if defined(__CUDA_ARCH__) || defined(__HIP_ARCH__)
// use __expf fast approximation for peak bandwidth
return __expf(x);
#else
return ::exp(x);
#endif
}
template <>
C10_HOST_DEVICE inline double exp<double>(double x) {
return ::exp(x);
}
template <typename T>
C10_HOST_DEVICE inline T log(T x) {
static_assert(
!std::is_same<T, double>::value,
"this template must be used with float or less precise type");
#if defined(__CUDA_ARCH__) || defined(__HIP_ARCH__)
// use __logf fast approximation for peak bandwidth
return __logf(x);
#else
return ::log(x);
#endif
}
template <>
C10_HOST_DEVICE inline double log<double>(double x) {
return ::log(x);
}
template <typename T>
C10_HOST_DEVICE inline T log1p(T x) {
static_assert(
!std::is_same<T, double>::value,
"this template must be used with float or less precise type");
#if defined(__CUDA_ARCH__) || defined(__HIP_ARCH__)
// use __logf fast approximation for peak bandwidth
// NOTE: There is no __log1pf so unfortunately we lose precision.
return __logf(1.0f + x);
#else
return ::log1p(x);
#endif
}
template <>
C10_HOST_DEVICE inline double log1p<double>(double x) {
return ::log1p(x);
}
template <typename T>
C10_HOST_DEVICE inline T tan(T x) {
static_assert(
!std::is_same<T, double>::value,
"this template must be used with float or less precise type");
#if defined(__CUDA_ARCH__) || defined(__HIP_ARCH__)
// use __tanf fast approximation for peak bandwidth
return __tanf(x);
#else
return ::tan(x);
#endif
}
template <>
C10_HOST_DEVICE inline double tan<double>(double x) {
return ::tan(x);
}
} // namespace at