-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
203 lines (166 loc) · 4.51 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import numpy
import itertools
from collections import namedtuple as NT
import datetime
def total_avg(total):
total = sorted(total, key=lambda x: x.time)
fig, ax = plt.subplots(1)
fig.autofmt_xdate()
# group by minute of day, do autocounting
minutes = collect_total(total, False)
x = map(lambda i: datetime.datetime(2012, 10, 12, i/60, i%60), minutes.keys())
y = []
for i in minutes:
y.append(minutes[i]/60)
ax.plot(x, y)
ax.fmt_xdata = mdates.DateFormatter('%H:%M')
ax.grid(True, which='major')
plt.xlabel(u'Tid')
plt.ylabel(u'Effekt i medel')
plt.title(u'Effektförbrukning över ett dygn')
plt.show()
def intensity(total):
total = sorted(total, key=lambda x: x.time)
grp = plot_grouped(total, lambda x: x.time.weekday())
alpha = 1.0/len(grp)
min_ = 0
for k in grp:
min_ = min(min(grp[k]), min_)
fig, ax = plt.subplots(1)
fig.autofmt_xdate()
average = {}
x = []
for k in grp:
# group by minute of day, count days manually
minutes = collect_total(grp[k], True)
x = map(lambda i: datetime.datetime(2012, 10, 12, i/60, i%60), minutes.keys())
y = []
for i in minutes:
y.append(minutes[i])
for mk in minutes:
if mk not in average:
average[mk] = 0.0
average[mk] += minutes[mk]
ax.fill_between(x, y, lw=0, alpha=alpha)
x = map(lambda i: datetime.datetime(2012, 10, 12, i/60, i%60), average.keys())
y = []
for i in average:
y.append(average[i]/len(grp))
ax.plot(x,y,'r', lw=0.5)
ax.fmt_xdata = mdates.DateFormatter('%H:%M')
ax.grid(True, which='major')
plt.xlabel(u'Tid')
plt.ylabel(u'Medeleffekt i watt')
plt.title(u'Intensitetsgraf')
plt.show()
def plot_grouped(data, xkey=lambda x: x, ykey=lambda y: y):
sort = sorted(data, key=xkey)
group = itertools.groupby(sort, xkey)
grouped = {}
for k, g in group:
grouped[k] = map(ykey, list(g))
x = grouped.keys()
y = []
for k in grouped.keys():
y.append(grouped[k])
return grouped
#plt.xlabel(xlab)
#plt.ylabel(ylab)
#plt.bar(x, y)
#plt.show()
def groupby(data, xkey=lambda x: x, ykey=lambda y: y):
sort = sorted(data, key=xkey)
group = itertools.groupby(sort, xkey)
grouped = {}
for k, g in group:
grouped[k] = map(ykey, list(g))
x = grouped.keys()
y = []
for k in grouped.keys():
y.append(grouped[k])
return grouped
def weighted_mean(data, weight=1):
pass
def collect_total(total, count_days=False):
if not total:
return dict(((i, 0) for i in xrange(1440)))
sort = sorted(total, key=lambda t:t.time)
first_day = sort[0]
last_day = sort[-1]
days_total = (last_day.time-first_day.time).days
weighted = []
nt = NT('energytuple', ['time', 'energy'])
minutes = {}
last = None
last_gap = None
c = 0
cur = None # scope
for cur in sort:
if not last_gap:
last_gap = cur
if last:
last_minute = last.time.minute + last.time.hour*60
cur_minute = cur.time.minute + cur.time.hour*60
diff = cur.time-last.time
if diff.days >= 1:
c += (last.time-last_gap.time).days + 1
#print (last.time-last_gap.time).days + 1
last_gap = cur
last = cur
continue
if last_minute != cur_minute:
remain = 60 - last.time.second
if last_minute not in minutes:
minutes[last_minute] = 0.0
minutes[last_minute] += remain*last.rate
diff -= datetime.timedelta(0, remain)
while diff.seconds >= 60:
last_minute += 1
if last_minute >= 1440:
last_minute = 0
if last_minute not in minutes:
minutes[last_minute] = 0.0
minutes[last_minute] += 60*last.rate
diff -= datetime.timedelta(0, 60)
last_minute += 1
if last_minute >= 1440:
last_minute = 0
if last_minute not in minutes:
minutes[last_minute] = 0.0
minutes[last_minute] += diff.seconds*last.rate
else:
if last_minute not in minutes:
minutes[last_minute] = 0.0
minutes[last_minute] += diff.seconds*last.rate
last = cur
c += (last.time-last_gap.time).days + 1
for k in minutes:
if count_days:
minutes[k] = minutes[k] / c / 60.0
else:
minutes[k] = minutes[k] / days_total / 60.0
return minutes
last = None
for i in sort:
if last != None:
en = (i.time-last.time).seconds * last.rate
weighted.append(nt(last.time, en))
last = i
group = itertools.groupby(weighted, key)
grouped = {}
for k, g in group:
grouped[k] = list(g)
return grouped
def plot(x, y, xlab, ylab, tit, bar):
plt.xlabel(xlab)
plt.ylabel(ylab)
plt.title(tit)
if bar:
plt.bar(x,y)
else:
plt.plot(x,y)
plt.show()
def plot_weekday_avg(data, day):
data = data[day]