-
Notifications
You must be signed in to change notification settings - Fork 1
/
utils.py
150 lines (115 loc) · 4.23 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import math
import torch
from PIL import ImageFilter
import random
class TwoCropsTransform:
"""Take two random crops of one image as the query and key."""
def __init__(self, base_transform):
self.base_transform = base_transform
def __call__(self, x):
q = self.base_transform(x)
k = self.base_transform(x)
return [q, k]
class ThreeCropsTransform:
"""Take two random crops of one image as the query and key."""
def __init__(self, base_transform, base_transform2):
self.base_transform = base_transform
self.base_transform2 = base_transform2
def __call__(self, x):
q = self.base_transform(x)
k = self.base_transform(x)
p = self.base_transform2(x)
return [q, k, p]
class GaussianBlur(object):
"""Gaussian blur augmentation in SimCLR https://arxiv.org/abs/2002.05709"""
def __init__(self, sigma=[.1, 2.]):
self.sigma = sigma
def __call__(self, x):
sigma = random.uniform(self.sigma[0], self.sigma[1])
x = x.filter(ImageFilter.GaussianBlur(radius=sigma))
return x
def adjust_learning_rate(optimizer, epoch, args):
"""Decay the learning rate based on schedule"""
bei = pow(2,int(epoch/(args.epochs/5)))
lr = args.lr/bei
# lr = args.lr
# cosine lr schedule
lr *= 0.5 * (1. + math.cos(math.pi * epoch / args.epochs))
print('lr:'+str(lr))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
def __init__(self, num_batches, meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
def display(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
print('\t'.join(entries))
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = '{:' + str(num_digits) + 'd}'
return '[' + fmt + '/' + fmt.format(num_batches) + ']'
def save_checkpoint(epoch, model, model_ema, optimizer, acc, filename, msg):
state = {
'epoch': epoch,
'state_dict': model.state_dict(),
'ema_state_dict': model_ema.state_dict(),
'optimizer': optimizer.state_dict(),
'top1_acc': acc
}
torch.save(state, filename)
print(msg)
def save_checkpoint_mine(epoch, model, optimizer, acc, filename, msg):
state = {
'epoch': epoch,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
'top1_acc': acc
}
torch.save(state, filename)
print(msg)
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].contiguous().view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def load_checkpoint(model, model_ema, optimizer, filename):
checkpoint = torch.load(filename, map_location='cuda:0')
start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'])
model_ema.load_state_dict(checkpoint['ema_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
return start_epoch, model, model_ema, optimizer