forked from wcharczuk/go-chart
-
Notifications
You must be signed in to change notification settings - Fork 1
/
mathutil.go
252 lines (219 loc) · 5.49 KB
/
mathutil.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
package chart
import "math"
const (
_pi = math.Pi
_2pi = 2 * math.Pi
_3pi4 = (3 * math.Pi) / 4.0
_4pi3 = (4 * math.Pi) / 3.0
_3pi2 = (3 * math.Pi) / 2.0
_5pi4 = (5 * math.Pi) / 4.0
_7pi4 = (7 * math.Pi) / 4.0
_pi2 = math.Pi / 2.0
_pi4 = math.Pi / 4.0
_d2r = (math.Pi / 180.0)
_r2d = (180.0 / math.Pi)
)
// MinMax returns the minimum and maximum of a given set of values.
func MinMax(values ...float64) (min, max float64) {
if len(values) == 0 {
return
}
max = values[0]
min = values[0]
var value float64
for index := 1; index < len(values); index++ {
value = values[index]
if value < min {
min = value
}
if value > max {
max = value
}
}
return
}
// MinInt returns the minimum int.
func MinInt(values ...int) (min int) {
if len(values) == 0 {
return
}
min = values[0]
var value int
for index := 1; index < len(values); index++ {
value = values[index]
if value < min {
min = value
}
}
return
}
// MaxInt returns the maximum int.
func MaxInt(values ...int) (max int) {
if len(values) == 0 {
return
}
max = values[0]
var value int
for index := 1; index < len(values); index++ {
value = values[index]
if value > max {
max = value
}
}
return
}
// AbsInt returns the absolute value of an int.
func AbsInt(value int) int {
if value < 0 {
return -value
}
return value
}
// DegreesToRadians returns degrees as radians.
func DegreesToRadians(degrees float64) float64 {
return degrees * _d2r
}
// RadiansToDegrees translates a radian value to a degree value.
func RadiansToDegrees(value float64) float64 {
return math.Mod(value, _2pi) * _r2d
}
// PercentToRadians converts a normalized value (0,1) to radians.
func PercentToRadians(pct float64) float64 {
return DegreesToRadians(360.0 * pct)
}
// RadianAdd adds a delta to a base in radians.
func RadianAdd(base, delta float64) float64 {
value := base + delta
if value > _2pi {
return math.Mod(value, _2pi)
} else if value < 0 {
return math.Mod(_2pi+value, _2pi)
}
return value
}
// DegreesAdd adds a delta to a base in radians.
func DegreesAdd(baseDegrees, deltaDegrees float64) float64 {
value := baseDegrees + deltaDegrees
if value > _2pi {
return math.Mod(value, 360.0)
} else if value < 0 {
return math.Mod(360.0+value, 360.0)
}
return value
}
// DegreesToCompass returns the degree value in compass / clock orientation.
func DegreesToCompass(deg float64) float64 {
return DegreesAdd(deg, -90.0)
}
// CirclePoint returns the absolute position of a circle diameter point given
// by the radius and the theta.
func CirclePoint(cx, cy int, radius, thetaRadians float64) (x, y int) {
x = cx + int(radius*math.Sin(thetaRadians))
y = cy - int(radius*math.Cos(thetaRadians))
return
}
// RotateCoordinate rotates a coordinate around a given center by a theta in radians.
func RotateCoordinate(cx, cy, x, y int, thetaRadians float64) (rx, ry int) {
tempX, tempY := float64(x-cx), float64(y-cy)
rotatedX := tempX*math.Cos(thetaRadians) - tempY*math.Sin(thetaRadians)
rotatedY := tempX*math.Sin(thetaRadians) + tempY*math.Cos(thetaRadians)
rx = int(rotatedX) + cx
ry = int(rotatedY) + cy
return
}
// RoundUp rounds up to a given roundTo value.
func RoundUp(value, roundTo float64) float64 {
if roundTo < 0.000000000000001 {
return value
}
d1 := math.Ceil(value / roundTo)
return d1 * roundTo
}
// RoundDown rounds down to a given roundTo value.
func RoundDown(value, roundTo float64) float64 {
if roundTo < 0.000000000000001 {
return value
}
d1 := math.Floor(value / roundTo)
return d1 * roundTo
}
// Normalize returns a set of numbers on the interval [0,1] for a given set of inputs.
// An example: 4,3,2,1 => 0.4, 0.3, 0.2, 0.1
// Caveat; the total may be < 1.0; there are going to be issues with irrational numbers etc.
func Normalize(values ...float64) []float64 {
var total float64
for _, v := range values {
total += v
}
output := make([]float64, len(values))
for x, v := range values {
output[x] = RoundDown(v/total, 0.0001)
}
return output
}
// Mean returns the mean of a set of values
func Mean(values ...float64) float64 {
return Sum(values...) / float64(len(values))
}
// MeanInt returns the mean of a set of integer values.
func MeanInt(values ...int) int {
return SumInt(values...) / len(values)
}
// Sum sums a set of values.
func Sum(values ...float64) float64 {
var total float64
for _, v := range values {
total += v
}
return total
}
// SumInt sums a set of values.
func SumInt(values ...int) int {
var total int
for _, v := range values {
total += v
}
return total
}
// PercentDifference computes the percentage difference between two values.
// The formula is (v2-v1)/v1.
func PercentDifference(v1, v2 float64) float64 {
if v1 == 0 {
return 0
}
return (v2 - v1) / v1
}
// GetRoundToForDelta returns a `roundTo` value for a given delta.
func GetRoundToForDelta(delta float64) float64 {
startingDeltaBound := math.Pow(10.0, 10.0)
for cursor := startingDeltaBound; cursor > 0; cursor /= 10.0 {
if delta > cursor {
return cursor / 10.0
}
}
return 0.0
}
// RoundPlaces rounds an input to a given places.
func RoundPlaces(input float64, places int) (rounded float64) {
if math.IsNaN(input) {
return 0.0
}
sign := 1.0
if input < 0 {
sign = -1
input *= -1
}
precision := math.Pow(10, float64(places))
digit := input * precision
_, decimal := math.Modf(digit)
if decimal >= 0.5 {
rounded = math.Ceil(digit)
} else {
rounded = math.Floor(digit)
}
return rounded / precision * sign
}
func f64i(value float64) int {
r := RoundPlaces(value, 0)
return int(r)
}