-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
240 lines (196 loc) · 7.49 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
"""
Written by Nathan Neeteson.
Training a U-Net on dataset of segmented images.
"""
# IMPORTS
import os
import yaml
import torch
from torch.nn import DataParallel
from torch.optim import AdamW
from torchvision.transforms import Compose
from models.UNet import UNet
from utils.error_metrics import (
HRpQCTEmbeddingNLLLoss, CurvatureLoss, MagnitudeGradientSDTLoss,
HRpQCTEmbeddingCombinedRegularizationLoss,
create_calculate_embedding_dice_coefficient
)
from dataset.SamplePadder import SamplePadder
from dataset.SampleStandardizer import SampleStandardizer
from dataset.SampleToTensors import SampleToTensors
from dataset.HRpQCTAIMDataset import HRpQCTAIMDataset
from utils.optimizer_scheduling import OptimizerSchedulerLinear
from utils.logging import Logger
from parser.parser import create_parser
from traintest.traintest import traintest
# MAIN FUNCTION
def main():
# Settings
parser = create_parser()
args = parser.parse_args()
# create trained model and logs directories if necessary
for d in [args.log_dir, args.trained_model_dir]:
if not (os.path.isdir(d)):
os.mkdir(d)
# save the parsed args to a yaml file in the trained model directory
with open(os.path.join(args.trained_model_dir, f"{args.label}.yaml"), 'w') as outfile:
yaml.dump(vars(args), outfile)
# assemble filenames for the trained model and the log file
model_filename = f'{args.trained_model_dir}{args.label}.pth'
log_filename = f'{args.log_dir}{args.label}.csv'
optimizer_filename = f'{args.optimizer_dir}{args.label}.pth'
# check what device to use
device = torch.device("cuda" if (torch.cuda.is_available() and args.cuda) else "cpu")
# create the model
model = UNet(args.input_channels, args.output_channels,
args.model_filters, args.channels_per_group, args.dropout)
model.float()
model.to(device)
# load the previous model parameters, if given
if args.prev_trained_model:
model.load_state_dict(torch.load(args.prev_trained_model))
# wrap the model in a parallel processing module if using multiple devices
if len(args.device_ids) > 1:
print('Using Data Parallel')
model = DataParallel(model, device_ids=args.device_ids)
# create dataset transforms
data_transforms = Compose([
SamplePadder(2 ** (len(args.model_filters) - 1)),
SampleStandardizer(args.min_density, args.max_density),
SampleToTensors(ohe=False)
])
# create datasets
training_dataset = HRpQCTAIMDataset(args.training_data_dir, transform=data_transforms)
validation_dataset = HRpQCTAIMDataset(args.validation_data_dir, transform=data_transforms)
# construct dictionary of testing functions
testing_functions = {
'dice': create_calculate_embedding_dice_coefficient(args.heaviside_epsilon)
}
# create optimizer kwargs dict
optimizer_kwargs = {
'lr': args.opt_min_lr,
'betas': (args.opt_max_momentum, args.opt_rms),
'eps': args.opt_eps,
'weight_decay': args.opt_weight_decay
}
# create optimizer
optimizer = AdamW(model.parameters(), **optimizer_kwargs)
# load the optimizer state dict, if given
if args.prev_optimizer:
optimizer.load_state_dict(torch.load(args.prev_optimizer))
# create the loss dictionary
losses = {
"NLL": {
"function": HRpQCTEmbeddingNLLLoss(args.heaviside_epsilon),
"coefficient": 1.0
},
"Curvature": {
"function": HRpQCTEmbeddingCombinedRegularizationLoss(
CurvatureLoss(args.voxel_width, args.curvature_threshold, device)
),
"coefficient": args.lambda_curvature
},
"MagGrad": {
"function": HRpQCTEmbeddingCombinedRegularizationLoss(
MagnitudeGradientSDTLoss(args.voxel_width, device)
),
"coefficient": args.lambda_maggrad
}
}
# create training dataset and dataloader kwargs dicts
training_dataloader_kwargs = {
'batch_size': 1,
'shuffle': True,
'num_workers': args.image_loader_workers
}
training_image_dataset_kwargs = {
'num_adjacent_slices': (args.input_channels - 1) // 2
}
training_image_dataloader_kwargs = {
'batch_size': args.training_batch_size,
'shuffle': True,
'num_workers': args.slice_loader_workers
}
# create validation dataset and dataloader kwargs dicts
validation_dataloader_kwargs = {
'batch_size': 1,
'shuffle': False,
'num_workers': args.image_loader_workers
}
validation_image_dataset_kwargs = {
'num_adjacent_slices': (args.input_channels - 1) // 2
}
validation_image_dataloader_kwargs = {
'batch_size': args.validation_batch_size,
'shuffle': False,
'num_workers': args.slice_loader_workers
}
# create the optimizer scheduler
optimizer_scheduler = OptimizerSchedulerLinear(
[
1,
args.num_epochs_half_cycle,
2 * args.num_epochs_half_cycle,
2 * args.num_epochs_half_cycle + args.num_epochs_convergence
],
[
args.opt_min_lr,
args.opt_max_lr,
args.opt_min_lr,
args.opt_min_lr / 10
],
[
args.opt_max_momentum,
args.opt_min_momentum,
args.opt_max_momentum,
args.opt_max_momentum
]
)
# establish the list of fields to be logged
log_fields = ['epoch', 'train/test', 'idx', 'name'] + list(testing_functions.keys())
# add all the losses
for loss in losses.keys():
log_fields.append(loss)
# add all the testing functions
for testing_function in testing_functions.keys():
log_fields.append(testing_function)
# create the logger
logger = Logger(log_filename, log_fields, args)
num_epochs = (
args.stopping_epoch if args.stopping_epoch
else 2 * args.num_epochs_half_cycle + args.num_epochs_convergence + 1
)
# train and validate
for epoch in range(args.starting_epoch, num_epochs):
logger.set_field_value('epoch', epoch)
# assign optimizer params according to schedule
optimizer_scheduler.set_epoch(epoch)
for g in optimizer.param_groups:
g['lr'] = optimizer_scheduler.get_lr()
g['momentum'] = optimizer_scheduler.get_mom()
# train one epoch
traintest(
args, model, device,
training_dataset, training_dataloader_kwargs,
training_image_dataset_kwargs, training_image_dataloader_kwargs,
optimizer, losses, testing_functions, logger, train=True
)
# validate one epoch
traintest(
args, model, device,
validation_dataset, validation_dataloader_kwargs,
validation_image_dataset_kwargs, validation_image_dataloader_kwargs,
None, losses, testing_functions, logger, train=False
)
# checkpoint the model
if len(args.device_ids) > 1:
torch.save(model.module.state_dict(), model_filename, _use_new_zipfile_serialization=False)
else:
torch.save(model.state_dict(), model_filename, _use_new_zipfile_serialization=False)
# checkpoint the optimizer
torch.save(optimizer.state_dict(), optimizer_filename, _use_new_zipfile_serialization=False)
# stop iterating, if in a dry run test
if args.dry_run:
break
if __name__ == '__main__':
main()