-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtinyraytracer.c
328 lines (279 loc) · 9.26 KB
/
tinyraytracer.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
/* A port of Dmitry Sokolov's tiny raytracer to C and to FemtoRV32 */
/* Displays on the small OLED display and/or HDMI */
/* Bruno Levy, 2020 */
/* Original tinyraytracer: https://github.com/ssloy/tinyraytracer */
#include <math.h>
// It is 80x50 (rather than 80x25) because GL_scan_RGB() and GL_scan_RGBf()
// use "double resolution" "pixels".
//
// Default 80x50 may feel to small, you can use larger value (and enlarge
// your terminal window).
#define GL_width 80
#define GL_height 50
#include "GL_tty.h"
/*******************************************************************/
typedef int BOOL;
static inline float max(float x, float y) { return x>y?x:y; }
static inline float min(float x, float y) { return x<y?x:y; }
/*******************************************************************/
typedef struct { float x,y,z; } vec3;
typedef struct { float x,y,z,w; } vec4;
static inline vec3 make_vec3(float x, float y, float z) {
vec3 V;
V.x = x; V.y = y; V.z = z;
return V;
}
static inline vec4 make_vec4(float x, float y, float z, float w) {
vec4 V;
V.x = x; V.y = y; V.z = z; V.w = w;
return V;
}
static inline vec3 vec3_neg(vec3 V) {
return make_vec3(-V.x, -V.y, -V.z);
}
static inline vec3 vec3_add(vec3 U, vec3 V) {
return make_vec3(U.x+V.x, U.y+V.y, U.z+V.z);
}
static inline vec3 vec3_sub(vec3 U, vec3 V) {
return make_vec3(U.x-V.x, U.y-V.y, U.z-V.z);
}
static inline float vec3_dot(vec3 U, vec3 V) {
return U.x*V.x+U.y*V.y+U.z*V.z;
}
static inline vec3 vec3_scale(float s, vec3 U) {
return make_vec3(s*U.x, s*U.y, s*U.z);
}
static inline float vec3_length(vec3 U) {
return sqrtf(U.x*U.x+U.y*U.y+U.z*U.z);
}
static inline vec3 vec3_normalize(vec3 U) {
return vec3_scale(1.0f/vec3_length(U),U);
}
/*************************************************************************/
typedef struct Light {
vec3 position;
float intensity;
} Light;
Light make_Light(vec3 position, float intensity) {
Light L;
L.position = position;
L.intensity = intensity;
return L;
}
/*************************************************************************/
typedef struct {
float refractive_index;
vec4 albedo;
vec3 diffuse_color;
float specular_exponent;
} Material;
Material make_Material(float r, vec4 a, vec3 color, float spec) {
Material M;
M.refractive_index = r;
M.albedo = a;
M.diffuse_color = color;
M.specular_exponent = spec;
return M;
}
Material make_Material_default() {
Material M;
M.refractive_index = 1;
M.albedo = make_vec4(1,0,0,0);
M.diffuse_color = make_vec3(0,0,0);
M.specular_exponent = 0;
return M;
}
/*************************************************************************/
typedef struct {
vec3 center;
float radius;
Material material;
} Sphere;
Sphere make_Sphere(vec3 c, float r, Material M) {
Sphere S;
S.center = c;
S.radius = r;
S.material = M;
return S;
}
BOOL Sphere_ray_intersect(Sphere* S, vec3 orig, vec3 dir, float* t0) {
vec3 L = vec3_sub(S->center, orig);
float tca = vec3_dot(L,dir);
float d2 = vec3_dot(L,L) - tca*tca;
float r2 = S->radius*S->radius;
if (d2 > r2) return 0;
float thc = sqrtf(r2 - d2);
*t0 = tca - thc;
float t1 = tca + thc;
if (*t0 < 0) *t0 = t1;
if (*t0 < 0) return 0;
return 1;
}
vec3 reflect(vec3 I, vec3 N) {
return vec3_sub(I, vec3_scale(2.f*vec3_dot(I,N),N));
}
vec3 refract(vec3 I, vec3 N, float eta_t, float eta_i /* =1.f */) {
// Snell's law
float cosi = -max(-1.f, min(1.f, vec3_dot(I,N)));
// if the ray comes from the inside the object, swap the air and the media
if (cosi<0) return refract(I, vec3_neg(N), eta_i, eta_t);
float eta = eta_i / eta_t;
float k = 1 - eta*eta*(1 - cosi*cosi);
// k<0 = total reflection, no ray to refract.
// I refract it anyways, this has no physical meaning
return k<0 ? make_vec3(1,0,0)
: vec3_add(vec3_scale(eta,I),vec3_scale((eta*cosi - sqrtf(k)),N));
}
BOOL scene_intersect(
vec3 orig, vec3 dir, Sphere* spheres, int nb_spheres,
vec3* hit, vec3* N, Material* material
) {
float spheres_dist = 1e30;
for(int i=0; i<nb_spheres; ++i) {
float dist_i;
if(
Sphere_ray_intersect(&spheres[i], orig, dir, &dist_i) &&
(dist_i < spheres_dist)
) {
spheres_dist = dist_i;
*hit = vec3_add(orig,vec3_scale(dist_i,dir));
*N = vec3_normalize(vec3_sub(*hit, spheres[i].center));
*material = spheres[i].material;
}
}
float checkerboard_dist = 1e30;
if (fabs(dir.y)>1e-3) {
float d = -(orig.y+4)/dir.y; // the checkerboard plane has equation y = -4
vec3 pt = vec3_add(orig, vec3_scale(d,dir));
if (d>0 && fabs(pt.x)<10 && pt.z<-10 && pt.z>-30 && d<spheres_dist) {
checkerboard_dist = d;
*hit = pt;
*N = make_vec3(0,1,0);
material->diffuse_color =
(((int)(.5*hit->x+1000) + (int)(.5*hit->z)) & 1)
? make_vec3(.3, .3, .3)
: make_vec3(.3, .2, .1);
}
}
return min(spheres_dist, checkerboard_dist)<1000;
}
vec3 cast_ray(
vec3 orig, vec3 dir, Sphere* spheres, int nb_spheres,
Light* lights, int nb_lights, int depth /* =0 */
) {
vec3 point,N;
Material material = make_Material_default();
if (
depth>2 ||
!scene_intersect(orig, dir, spheres, nb_spheres, &point, &N, &material)
) {
float s = 0.5*(dir.y + 1.0);
return vec3_add(
vec3_scale(s,make_vec3(0.2, 0.7, 0.8)),
vec3_scale(s,make_vec3(0.0, 0.0, 0.5))
);
}
vec3 reflect_dir=vec3_normalize(reflect(dir, N));
vec3 refract_dir=vec3_normalize(refract(dir,N,material.refractive_index,1));
// offset the original point to avoid occlusion by the object itself
vec3 reflect_orig =
vec3_dot(reflect_dir,N) < 0
? vec3_sub(point,vec3_scale(1e-3,N))
: vec3_add(point,vec3_scale(1e-3,N));
vec3 refract_orig =
vec3_dot(refract_dir,N) < 0
? vec3_sub(point,vec3_scale(1e-3,N))
: vec3_add(point,vec3_scale(1e-3,N));
vec3 reflect_color = cast_ray(
reflect_orig, reflect_dir, spheres, nb_spheres,
lights, nb_lights, depth + 1
);
vec3 refract_color = cast_ray(
refract_orig, refract_dir, spheres, nb_spheres,
lights, nb_lights, depth + 1
);
float diffuse_light_intensity = 0, specular_light_intensity = 0;
for (int i=0; i<nb_lights; i++) {
vec3 light_dir = vec3_normalize(vec3_sub(lights[i].position,point));
float light_distance = vec3_length(vec3_sub(lights[i].position,point));
vec3 shadow_orig =
vec3_dot(light_dir,N) < 0
? vec3_sub(point,vec3_scale(1e-3,N))
: vec3_add(point,vec3_scale(1e-3,N)) ;
// checking if the point lies in the shadow of the lights[i]
vec3 shadow_pt, shadow_N;
Material tmpmaterial;
if (
scene_intersect(
shadow_orig, light_dir, spheres, nb_spheres,
&shadow_pt, &shadow_N, &tmpmaterial
) && (
vec3_length(vec3_sub(shadow_pt,shadow_orig)) < light_distance
)
) continue ;
diffuse_light_intensity +=
lights[i].intensity * max(0.f, vec3_dot(light_dir,N));
float abc = max(
0.f, vec3_dot(vec3_neg(reflect(vec3_neg(light_dir), N)),dir)
);
float def = material.specular_exponent;
if(abc > 0.0f && def > 0.0f) {
specular_light_intensity += powf(abc,def)*lights[i].intensity;
}
}
vec3 result = vec3_scale(
diffuse_light_intensity * material.albedo.x, material.diffuse_color
);
result = vec3_add(
result, vec3_scale(specular_light_intensity * material.albedo.y,
make_vec3(1,1,1))
);
result = vec3_add(result, vec3_scale(material.albedo.z, reflect_color));
result = vec3_add(result, vec3_scale(material.albedo.w, refract_color));
return result;
}
int nb_spheres = 4;
Sphere spheres[4];
int nb_lights = 3;
Light lights[3];
void init_scene() {
Material ivory = make_Material(
1.0, make_vec4(0.6, 0.3, 0.1, 0.0), make_vec3(0.4, 0.4, 0.3), 50.
);
Material glass = make_Material(
1.5, make_vec4(0.0, 0.5, 0.1, 0.8), make_vec3(0.6, 0.7, 0.8), 125.
);
Material red_rubber = make_Material(
1.0, make_vec4(0.9, 0.1, 0.0, 0.0), make_vec3(0.3, 0.1, 0.1), 10.
);
Material mirror = make_Material(
1.0, make_vec4(0.0, 10.0, 0.8, 0.0), make_vec3(1.0, 1.0, 1.0), 142.
);
spheres[0] = make_Sphere(make_vec3(-3, 0, -16), 2, ivory);
spheres[1] = make_Sphere(make_vec3(-1.0, -1.5, -12), 2, glass);
spheres[2] = make_Sphere(make_vec3( 1.5, -0.5, -18), 3, red_rubber);
spheres[3] = make_Sphere(make_vec3( 7, 5, -18), 4, mirror);
lights[0] = make_Light(make_vec3(-20, 20, 20), 1.5);
lights[1] = make_Light(make_vec3( 30, 50, -25), 1.8);
lights[2] = make_Light(make_vec3( 30, 20, 30), 1.7);
}
void render(int x, int y, float* r, float* g, float* b) {
const float fov = M_PI/3.;
float dir_x = (x + 0.5) - GL_width/2.;
float dir_y = -(y + 0.5) + GL_height/2.; // this flips the image.
float dir_z = -GL_height/(2.*tan(fov/2.));
vec3 C = cast_ray(
make_vec3(0,0,0), vec3_normalize(make_vec3(dir_x, dir_y, dir_z)),
spheres, nb_spheres, lights, nb_lights, 0
);
*r=C.x;
*g=C.y;
*b=C.z;
}
int main() {
init_scene();
GL_init();
GL_scan_RGBf(GL_width, GL_height, render);
GL_terminate();
return 0;
}