-
Notifications
You must be signed in to change notification settings - Fork 5
/
FaceRec.py
120 lines (91 loc) · 3.18 KB
/
FaceRec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import cv2
import face_recognition
import os
from string import digits
from time import sleep, time
def capture(img_name):
print("Starting Face Capture....")
print("Look at the WebCam")
sleep(3)
cam = cv2.VideoCapture(0)
cv2.namedWindow("God's Eye")
img_counter = 0
while True:
ret, frame = cam.read()
cv2.imshow("test", frame)
if not ret:
break
k = cv2.waitKey(1)
if k % 256 == 27:
# ESC pressed
print("Escape hit, closing...")
break
if img_counter % 10 == 0:
img = f"{img_name}{img_counter}.jpg"
cv2.imwrite(img, frame)
print(f"{img} written!")
img_counter += 1
if img_counter > 100:
break
cam.release()
cv2.destroyAllWindows()
def matchFace(dir):
known_face_encodings = []
known_face_names = []
for face in os.listdir(dir):
face_image = face_recognition.load_image_file(dir + "/" + face)
encodings = face_recognition.face_encodings(face_image)
if len(encodings) > 0:
face_encoding = encodings[0]
known_face_encodings.append(face_encoding)
face = face.translate(digits)
known_face_names.append(face)
face_locations = []
face_encodings = []
face_names = []
process_this_frame = True
timeout = 15.0
start_time = time()
cam = cv2.VideoCapture(0)
cv2.namedWindow("God's Eye")
found = False
while (time() - start_time) < timeout:
ret, frame = cam.read()
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
rgb_small_frame = small_frame[:, :, ::-1]
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(
rgb_small_frame, face_locations)
face_names = []
name = "Unknown"
for face_encoding in face_encodings:
matches = face_recognition.face_distance(
known_face_encodings, face_encoding)
matches = matches.tolist()
min_matches = min(matches)
threshold = 0.5
if min_matches < threshold:
first_match_index = matches.index(min_matches)
name = known_face_names[first_match_index]
face_names.append(name)
for (top, right, bottom, left), name in zip(face_locations, face_names):
top *= 4
right *= 4
bottom *= 4
left *= 4
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
cv2.rectangle(frame, (left, bottom - 35),
(right, bottom), (0, 0, 255), cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(frame, name, (left + 6, bottom - 6),
font, 1.0, (255, 255, 255), 1)
cv2.imshow('Video', frame)
# Hit 'q' on the keyboard to quit!
if (cv2.waitKey(1) & 0xFF == ord('q')):
break
if name != "Unknown":
found = True
break
cam.release()
cv2.destroyAllWindows()
return found