-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrie4.rs
403 lines (365 loc) · 14.8 KB
/
trie4.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
// This evolved from trie3, and represents a major change to how its state
// machine is laid out in memory. Now our match values are separate from our
// transition table. And our transition table is no longer nested arrays, but
// just one big array. And we pre-multiply our node IDs.
//
// This trie overall uses a fair bit more space. For two reasons. First is
// because our node ID is now a `u16` instead of a `u8`. This is because of the
// pre-multiplied optimization (where a node index of 2 is mapped to a node
// id of `2 * ALPHABET_LEN`). This saves a multiply in the search loop at the
// cost needing a bigger primitive type to store the IDs. The second reason is
// that our `matches` array is the same size as our transition table, which is
// clearly wasteful. We could shrink this a bit by converting the match node ID
// back to its node index, but I didn't want to spend the effort. (You naively
// think this requires a `div` per `find` that finds a match. To avoid that,
// you need to make the alphabet length a power of 2. Then you can do a shift
// instead of a div. Of course, this means wasting a bit more space and dealing
// with the power-of-2 logic.)
//
// Overall, this trie uses about 3x the space of the previous 3 tries. It
// comes in at about 6.3KB... which feels a little big. Hell, the 2.3KB used
// by the previous tries felt a little big! Some other things to try here would
// be to see just how much time we're saving by pre-multiplying the IDs. Maybe
// it's insignificant. But I wanted to go a different direction with trie5, so
// I abandoned this particular trie4.
type TrieNodeId = u16;
#[derive(Clone, Debug)]
pub(crate) struct Trie<
const TRANSITION_CAPACITY: usize,
const NEEDLE_LEN: usize,
const ALPHABET_LEN: usize,
V: 'static,
> {
transitions: [TrieNodeId; TRANSITION_CAPACITY],
matches: [V; TRANSITION_CAPACITY],
alphabet: TrieAlphabet,
node_len: usize,
max_needle_len: usize,
max_match_node_id: TrieNodeId,
root_node_id: TrieNodeId,
}
impl<
const TRANSITION_CAPACITY: usize,
const NEEDLE_LEN: usize,
const ALPHABET_LEN: usize,
V: Copy + 'static,
> Trie<TRANSITION_CAPACITY, NEEDLE_LEN, ALPHABET_LEN, V>
{
const FAIL_ID: TrieNodeId = 0;
pub(crate) const fn new(
needles: &TrieNeedles<V>,
default: V,
) -> Trie<TRANSITION_CAPACITY, NEEDLE_LEN, ALPHABET_LEN, V> {
let node_capacity = TRANSITION_CAPACITY / ALPHABET_LEN;
// The alphabet length inferred by the caller need to match the actual
// alphabet length of the trie.
let alphabet = needles.alphabet();
assert!(alphabet.len() == ALPHABET_LEN);
// It must be impossible to exceed our identifier capacity.
assert!(TRANSITION_CAPACITY <= TrieNodeId::MAX as usize);
let mut trie: Trie<TRANSITION_CAPACITY, NEEDLE_LEN, ALPHABET_LEN, V> =
Trie {
transitions: [Self::FAIL_ID; TRANSITION_CAPACITY],
matches: [default; TRANSITION_CAPACITY],
alphabet,
node_len: 2,
max_needle_len: 0,
max_match_node_id: Self::FAIL_ID,
root_node_id: Self::FAIL_ID + ALPHABET_LEN as TrieNodeId,
};
// An intermediate array to store the transitions. This will basically
// wind up being copied to `trie.transitions`, but with all match
// nodes shuffled before all non-match nodes.
let mut trans: [TrieNodeId; TRANSITION_CAPACITY] =
[Self::FAIL_ID; TRANSITION_CAPACITY];
// An intermediate array to accumulate the match values for each
// match node. This is gratuitously wasteful, but we compact the
// match values into `trie.matches` in a second pass.
let mut matches: [Option<V>; TRANSITION_CAPACITY] =
[None; TRANSITION_CAPACITY];
let mut i = 0;
while i < needles.map.len() {
let (needle, unit) = needles.map[i];
i += 1;
if needle.len() > trie.max_needle_len {
trie.max_needle_len = needle.len();
}
let mut node_id = trie.root_node_id;
let mut k = 0;
while k < needle.len() {
let byte = needle.as_bytes()[k];
let equiv_id = trie.alphabet.equiv_id(byte);
k += 1;
let mut next_id = trans[node_id as usize + equiv_id as usize];
if next_id == Self::FAIL_ID {
// If this assertion fails, then the Trie needs more
// capacity.
assert!(trie.node_len < node_capacity);
// If this fails, then `TrieNodeId` needs to be a bigger
// primitive type.
next_id = (trie.node_len as TrieNodeId)
.checked_mul(ALPHABET_LEN as TrieNodeId)
.unwrap();
trie.node_len += 1;
}
trans[node_id as usize + equiv_id as usize] = next_id;
node_id = next_id;
}
// This assert prevents duplicate needles. That is, every needle
// must map to one and precisely one value. We could support
// "overwrite" semantics, but I think it's better to fail loudly
// here.
if let Some(_) = matches[node_id as usize] {
panic!("duplicate needle detected");
}
matches[node_id as usize] = Some(unit);
}
// First, copy over all match nodes to `trie.transitions`. That way,
// all matching nodes will appear before non-matching nodes.
//
// Once exception to this is the fail node. That always comes first.
// Because the case analysis in the search loop is:
//
// if node_id <= max_match_node_id {
// if node_id == Self::FAIL_ID {
// break;
// }
// last_match = node_id;
// }
//
// That way, we have only one branch. In other words, the case analysis
// is more like, "does this node need special attention?"
//
// This same optimization is used in regex-automata, but there are more
// than fail, match and non-match nodes. There are other special nodes.
let mut old_to_new: [TrieNodeId; TRANSITION_CAPACITY] =
[Self::FAIL_ID; TRANSITION_CAPACITY];
let mut old_node_index = 1;
let mut new_node_index = 1;
while old_node_index < trie.node_len {
let old_node_id = old_node_index * (ALPHABET_LEN as usize);
old_node_index += 1;
let Some(match_value) = matches[old_node_id] else {
continue;
};
let new_node_id = new_node_index * (ALPHABET_LEN as usize);
new_node_index += 1;
// Keep a record of the new node ID so that we can remap
// transitions later.
old_to_new[old_node_id] = new_node_id as TrieNodeId;
// Copy the transitions over.
let mut i = 0;
while i < (ALPHABET_LEN as usize) {
trie.transitions[new_node_id + i] = trans[old_node_id + i];
i += 1;
}
// And record the match value.
trie.matches[new_node_id] = match_value;
// The last recording is the maximum node id that is a match
// node, by construction.
trie.max_match_node_id = new_node_id as TrieNodeId;
}
// Now do the same, but for non-match nodes.
let mut old_node_index = 1;
while old_node_index < trie.node_len {
let old_node_id = old_node_index * (ALPHABET_LEN as usize);
old_node_index += 1;
if matches[old_node_id].is_some() {
continue;
}
let new_node_id = new_node_index * (ALPHABET_LEN as usize);
new_node_index += 1;
// Keep a record of the new node ID so that we can remap
// transitions later.
old_to_new[old_node_id] = new_node_id as TrieNodeId;
// Copy the transitions over.
let mut i = 0;
while i < (ALPHABET_LEN as usize) {
trie.transitions[new_node_id + i] = trans[old_node_id + i];
i += 1;
}
}
// Re-map all transitions to reflect their new IDs.
let mut i = 0;
while i < trie.transitions.len() {
trie.transitions[i] = old_to_new[trie.transitions[i] as usize];
i += 1;
}
trie.root_node_id = old_to_new[trie.root_node_id as usize];
trie
}
#[inline(always)]
pub(crate) fn find<'h>(&self, haystack: &'h [u8]) -> Option<(V, usize)> {
let mut node_id = self.root_node_id;
let mut found = if node_id <= self.max_match_node_id {
Some((node_id, 0))
} else {
None
};
for (i, &byte) in haystack.iter().enumerate() {
let equiv_id = self.alphabet.equiv_id(byte);
node_id = self.transitions[node_id as usize + equiv_id as usize];
if node_id <= self.max_match_node_id {
if node_id == Self::FAIL_ID {
break;
}
found = Some((node_id, i + 1));
}
}
found.map(|(node_id, offset)| (self.matches[node_id as usize], offset))
}
}
#[derive(Clone, Copy, Debug)]
pub(crate) struct TrieNeedles<V: 'static> {
map: &'static [(&'static str, V)],
}
impl<V: Copy + 'static> TrieNeedles<V> {
pub(crate) const fn new(
map: &'static [(&'static str, V)],
) -> TrieNeedles<V> {
TrieNeedles { map }
}
pub(crate) const fn len(&self) -> usize {
self.map.len()
}
pub(crate) const fn alphabet_len(&self) -> usize {
self.alphabet().len()
}
pub(crate) const fn transition_len(&self, node_capacity: usize) -> usize {
self.alphabet().len() * node_capacity
}
const fn alphabet(&self) -> TrieAlphabet {
TrieAlphabet::new(self)
}
}
#[derive(Clone)]
struct TrieAlphabet {
len: u16,
equiv_classes: [u8; 256],
}
impl TrieAlphabet {
const fn new<V: Copy>(needles: &TrieNeedles<V>) -> TrieAlphabet {
let mut equiv_set = [false; 256];
let mut i = 0;
while i < needles.map.len() {
let (needle, _) = needles.map[i];
i += 1;
let mut k = 0;
while k < needle.len() {
let byte = needle.as_bytes()[k];
equiv_set[byte as usize] = true;
k += 1;
}
}
// Count the number of distinct bytes seen in the needles. If we get
// to 256, then that's the number of equivalence classes since there
// are no byte values that don't occur in the needles. But if we get
// N<256, then the number of equivalence classes is N+1, where the +1
// accounts for the equivalence class containing all byte values that
// were not present in the needles.
let mut len = 0;
let mut i = 0;
while i < equiv_set.len() {
if equiv_set[i] {
len += 1;
}
i += 1;
}
if len < 256 {
len += 1;
}
let mut equiv_classes = [0x00; 256];
let mut byte: u16 = 0;
if len == 256 {
// In this case, there are 256 distinct bytes present in the
// needles. So there must be exactly 256 equivalence classes and
// each class just maps to the corresponding byte value.
while byte < 256 {
equiv_classes[byte as usize] = byte as u8;
byte += 1;
}
} else {
// We start at 1 here since we know there must be at least some
// bytes that are not in the alphabet, and all of those get
// implicitly assigned to equivalent class identifier `0`.
let mut equiv_id: u16 = 1;
while byte < 256 {
if equiv_set[byte as usize] {
// Correct because we are limited to 256 iterations. We do
// start at 1, which means we could get to 256 here (before
// incrementing to 257 below), but that would require
// 256 distinct bytes. And that case is handled above.
assert!(equiv_id < 256);
equiv_classes[byte as usize] = equiv_id as u8;
equiv_id += 1;
}
byte += 1;
}
}
TrieAlphabet { len, equiv_classes }
}
#[inline(always)]
const fn len(&self) -> usize {
self.len as usize
}
#[inline(always)]
const fn equiv_id(&self, byte: u8) -> u8 {
self.equiv_classes[byte as usize]
}
}
impl core::fmt::Debug for TrieAlphabet {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
f.debug_struct("TrieAlphabet").field("len", &self.len).finish()
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn empty() {
type EmptyTrie = Trie<
{ EMPTY_NEEDLES.transition_len(2) },
{ EMPTY_NEEDLES.len() },
{ EMPTY_NEEDLES.alphabet_len() },
char,
>;
static EMPTY_TRIE: &'static EmptyTrie =
&Trie::new(&EMPTY_NEEDLES, '\0');
const EMPTY_NEEDLES: TrieNeedles<char> =
TrieNeedles::new(&[("", 'z')]);
assert_eq!(EMPTY_TRIE.find(b""), Some(('z', 0)));
}
#[test]
fn fubar() {
type FooTrie = Trie<
{ FOO_NEEDLES.transition_len(12) },
{ FOO_NEEDLES.len() },
{ FOO_NEEDLES.alphabet_len() },
char,
>;
const FOO_NEEDLES: TrieNeedles<char> =
TrieNeedles::new(&[("foo", 'a'), ("bar", 'b'), ("quux", 'c')]);
static FOO_TRIE: &'static FooTrie = &Trie::new(&FOO_NEEDLES, '\0');
assert_eq!(FOO_TRIE.find(b""), None);
assert_eq!(FOO_TRIE.find(b"fo"), None);
assert_eq!(FOO_TRIE.find(b"foo"), Some(('a', 3)));
assert_eq!(FOO_TRIE.find(b"fooquux"), Some(('a', 3)));
}
#[test]
fn aaa() {
type AaaTrie = Trie<
{ AAA_NEEDLES.transition_len(12) },
{ AAA_NEEDLES.len() },
{ AAA_NEEDLES.alphabet_len() },
char,
>;
static AAA_TRIE: &'static AaaTrie = &Trie::new(&AAA_NEEDLES, '\0');
const AAA_NEEDLES: TrieNeedles<char> =
TrieNeedles::new(&[("a", 'a'), ("aa", 'b'), ("aaa", 'c')]);
assert_eq!(AAA_TRIE.find(b""), None);
assert_eq!(AAA_TRIE.find(b"a"), Some(('a', 1)));
assert_eq!(AAA_TRIE.find(b"aa"), Some(('b', 2)));
assert_eq!(AAA_TRIE.find(b"aaa"), Some(('c', 3)));
assert_eq!(AAA_TRIE.find(b"aaaa"), Some(('c', 3)));
}
}