-
Notifications
You must be signed in to change notification settings - Fork 129
/
image_demo_Chinese.py
executable file
·49 lines (36 loc) · 1.67 KB
/
image_demo_Chinese.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
#! /usr/bin/env python
# coding=utf-8
import cv2
import numpy as np
import core.utils_Chinese as utils
import tensorflow as tf
from PIL import Image
# 定义基本参数变量
return_elements = ["input/input_data:0", "pred_sbbox/concat_2:0", "pred_mbbox/concat_2:0", "pred_lbbox/concat_2:0"]
pb_file = "./checkpoint/yolov3_coco_v3.pb" # "./checkpoint/yolov3_helmet.pb" # 预测文件路径
output_path = './demo_Chinese.jpg'
num_classes = 80 # 类别数
input_size = 608
graph = tf.Graph()
def predict(image_path):
original_image = cv2.imread(image_path)
original_image_size = original_image.shape[:2]
image_data = utils.image_preporcess(np.copy(original_image), [input_size, input_size])
image_data = image_data[np.newaxis, ...]
return_tensors = utils.read_pb_return_tensors(graph, pb_file, return_elements)
with tf.Session(graph=graph) as sess:
pred_sbbox, pred_mbbox, pred_lbbox = sess.run(
[return_tensors[1], return_tensors[2], return_tensors[3]],
feed_dict={ return_tensors[0]: image_data})
pred_bbox = np.concatenate([np.reshape(pred_sbbox, (-1, 5 + num_classes)),
np.reshape(pred_mbbox, (-1, 5 + num_classes)),
np.reshape(pred_lbbox, (-1, 5 + num_classes))], axis=0)
bboxes = utils.postprocess_boxes(pred_bbox, original_image_size, input_size, 0.4)
bboxes = utils.nms(bboxes, 0.45, method='nms')
image = utils.draw_bbox(original_image, bboxes)
image = Image.fromarray(image)
image.show()
image.save(output_path)
if __name__ == "__main__":
image_path = "./docs/normal_images/yolov.jpg"
predict(image_path)