Skip to content

Latest commit

 

History

History
147 lines (120 loc) · 4.31 KB

README.md

File metadata and controls

147 lines (120 loc) · 4.31 KB

Dynamic Dual Gating Neural Networks

This repository contains the PyTorch implementation for

Dynamic Dual Gating Neural Networks
Fanrong Li, Gang Li, Xiangyu He, Jian Cheng
ICCV 2021 Oral

image

Getting Started

Requirements

The main requirements of this work are:

  • Python 3.7
  • PyTorch == 1.5.0
  • Torchvision == 0.6.0
  • CUDA 10.2

We recommand using conda env to setup the experimental environments.

# Create environment
conda create -n DGNet python=3.7
conda activate DGNet

# Install PyTorch & Torchvision
pip install torch==1.5.0 torchvision==0.6.0

# Clone repo
git clone https://github.com/anonymous-9800/DGNet.git ./DGNet
cd ./DGNet

# Install other requirements
pip install -r requirements.txt

Trained models

Our trained models can be found here: Google Drive. And the pretrained cifar10 models can be found here: Google Drive. Unzip and place them into the DGNet folder.

Evaluate a trained DGNet

# CIFAR-10
sh ./scripts/cifar_e.sh [ARCH] [PATH-TO-DATASET] [GPU-IDs] [PATH-TO-SAVE] [PATH-TO-TRAINED-MODEL]

# ResNet on ImageNet
sh ./scripts/imagenet_e.sh [ARCH] [PATH-TO-DATASET] [GPU-IDs] [PATH-TO-SAVE] [PATH-TO-TRAINED-MODEL]

# Example
sh ./scripts/imagenet_e.sh resdg34 [PATH-TO-DATASET] 0 imagenet/resdg34-04-e ./trained_models_cls/imagenet_results/resdg34/sparse06/resdg34_04.pth.tar

Train a DGNet

# CIFAR-10
sh ./scripts/cifar_t.sh [ARCH] [PATH-TO-DATASET] [TARGET-DENSITY] [GPU-IDs] [PATH-TO-SAVE] [PATH-TO-PRETRAINED-MODEL]

# ResNet on ImageNet
sh ./scripts/imagenet_t.sh [ARCH] [PATH-TO-DATASET] [TARGET-DENSITY] [GPU-IDs] [PATH-TO-SAVE]

# Example
sh ./scripts/imagenet_t.sh resdg34 [PATH-TO-DATASET] 0.4 0,1 imagent/resdg34-04

Main results

Model Method Top-1 (%) Top-5 (%) FLOPs Google Drive
ResNet-18 DGNet (50%) 70.12 89.22 9.54E8 Link
DGNet (60%) 69.38 88.94 7.88E8 Link
ResNet-34 DGNet (60%) 73.01 90.99 1.50E9 Link
DGNet (70%) 71.95 90.46 1.21E9 Link
ResNet-50 DGNet (60%) 76.41 93.05 1.65E9 Link
DGNet (70%) 75.12 92.34 1.31E9 Link
MobileNet-V2 DGNet (50%) 71.62 90.05 1.60E8 Link

Citation

If you find this project useful for your research, please use the following BibTeX entry.

@inproceedings{dgnet,
  title={Dynamic Dual Gating Neural Networks},
  author={Li, Fanrong and Li, Gang and He, Xiangyu and Cheng, Jian},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision (ICCV)},
  year={2021}
}

Contact

For any questions, feel free to contact: lifanrong2017@ia.ac.cn