

Containerize Everything

Thinking in TEUs(*)

(*) Twenty-foot Equivalent Unit

Previously
● Most things in docker but not everything

– docker-compose.yml

● Frequently a “bare metal” PostgreSQL
– Needed during a build
– May be configured oddly
– “bleeds through”, i.e. not “the same for everyone”

● Many manual steps to “get going”
– Easy to get sidetracked into debugging your environment

Changes
● docker-compose

– ./prime-router/docker-compose.yml
– ./prime-router/docker-compose.build.yml

● gradle | ./gradlew
● ./prime-router/build.sh
● ./prime-router/cleanslate.sh

docker-compose
● ./prime-router/docker-compose.yml

– The ‘same’ you know and love
– Creates/attaches itself to a (docker) internal network called ‘prime-router_build’
– Uses this network for container-to-container communications within your composed environment

● ./prime-router/docker-compose.build.yml
– The minimal set of (correctly configured) containers that you need to do a build

● Really, only PostgreSQL – get rid of your bare metal PostgreSQL
● But configured especially for us

– docker-compose --file docker-compose.build.yml up --detach
– (also) Creates/attaches to that ‘prime-router_build’ network, this is your runtime DB

● Warnings and ‘errors’ about orphan artifacts
– Due to splitting over multiple docker-compose files; ignore them

docker-compose
● PostgreSQL

– docker-compose --file docker-compose.build.yml up --detach
– docker-compose --file docker-compose.build.yml down

● PRIME Router
– docker-compose --file docker-compose.yml up --detach
– docker-compose –file docker-compose.yml down

● Are things running?
– docker container ls [-a]: list my containers; -a includes stopped containers if there are any

● Logs:
– docker logs prime-router_prime_dev_1 [--follow]
– docker logs prime-router_postgresql_1 [--follow]

● Attaching
– docker exec -it prime-router_prime_dev_1 bash: bash into that running container

gradle | ./gradlew
● Does not change
● Keep using it the way you are using it

./prime-router/build.sh
● “These are (most likely) not the droids you are looking for”

– Only intended for the CI/CD pipeline
– If you want to build as if you are the CI/CD pipeline
– e.g.: the pipeline fails but your box doesn’t

● The build happens inside a (controlled) container
● The build artifacts are located outside the container
● Benefits

– Repeatability: The box can be recreated over and over and over again
– Reproducibility: anyone can build in the same environment as the pipeline
– Supply Chain Management: we know what’s “on the box” as opposed to what is in GitHub’s image

● Requires elevation (i.e. will prompt you for sudo password)
– Because: id(container($USER)) != id(local($USER)) and both stat.st_uid and stat.st_mode store just integers
– To play nice with ‘local’ gradle invocations, does a chown -R $YOU & chmod -R a+rw on anything a build touches
–

./prime-router/cleanslate.sh
● First Port-of-Call if your environment gets messed up
● Does what it says on the tin: wipes the slate clean

– Cleaning up containers is easy
– Cleaning up apps running on bare metal is … riskier

● Requires that you run things in containers and not on bare metal
– I’m (lovingly) looking at you, PostgreSQL

● “Destroys” everything you tell it to destroy, and then brings it up again while satisfying all dependencies
● Two Functions

– Onboarding: sets up everything, including containers, vault, a first build of bits and container, instantiate the router, front to back
– Wipe your slate clean: recover from a bad state, pretend I’m a new developer

● ./cleanslate.sh --help will show you the way
– There’s also ./cleanslate.sh --instructions for post-run instructions

● ./prime-router/cleanslate.sh.log: diagnostics
● Repeatable but takes a bit to run because it does what it says it will do

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

