diff --git a/benchmarks/splines_plot.py b/benchmarks/splines_plot.py index bbeed7638..8834350de 100644 --- a/benchmarks/splines_plot.py +++ b/benchmarks/splines_plot.py @@ -35,8 +35,8 @@ plt.figure(figsize=(8, 6)) for nx, group_data in data_groups.items(): ny = group_data["ny"] - bandwidth = [group_data["bytes_per_second"][i] for i in range(len(ny))] - plt.plot(ny, bandwidth, marker='o', markersize=5, label=f'nx={nx}') + throughput = [group_data["bytes_per_second"][i] for i in range(len(ny))] + plt.plot(ny, throughput, marker='o', markersize=5, label=f'nx={nx}') x = np.linspace(min(ny), 20*min(ny)) plt.plot(x, np.mean([data_groups[nx]["bytes_per_second"][0] for nx in nx_values])/min(ny)*x, linestyle='--', color='black', label='perfect scaling') @@ -45,10 +45,10 @@ plt.grid() plt.xscale("log") plt.xlabel("ny") -plt.ylabel("Bandwidth [B/s]") -plt.title("Bandwidth on "+str.upper(data["context"]["chip"])); +plt.ylabel("Throughput [B/s]") +plt.title("Throughput on "+str.upper(data["context"]["chip"])); plt.legend() -plt.savefig("bandwidth_ny.png") +plt.savefig("throughput_ny.png") #gpu_mem plt.figure(figsize=(8, 6)) @@ -74,8 +74,8 @@ plt.figure(figsize=(8, 6)) for nx, group_data in data_groups.items(): cols_per_chunk = group_data["cols_per_chunk"] - bandwidth = [group_data["bytes_per_second"][i] for i in range(len(cols_per_chunk))] - plt.plot(cols_per_chunk, bandwidth, marker='o', markersize=5, label=f'nx={nx}') + throughput = [group_data["bytes_per_second"][i] for i in range(len(cols_per_chunk))] + plt.plot(cols_per_chunk, throughput, marker='o', markersize=5, label=f'nx={nx}') x = [(int)(data["context"]["cols_per_chunk_ref"]), (int)(data["context"]["cols_per_chunk_ref"])*1.001]; plt.plot(x, [0.99*min([min(group_data["bytes_per_second"]) for nx, group_data in data_groups.items()]), 1.01*max([max(group_data["bytes_per_second"]) for nx, group_data in data_groups.items()])], linestyle='dotted', color='black', label='reference config') @@ -84,10 +84,10 @@ plt.grid() plt.xscale("log") plt.xlabel("cols_per_chunk") -plt.ylabel("Bandwidth [B/s]") -plt.title("Bandwidth on "+str.upper(data["context"]["chip"])+" (with ny=100000)"); +plt.ylabel("Throughput [B/s]") +plt.title("Throughput on "+str.upper(data["context"]["chip"])+" (with ny=100000)"); plt.legend() -plt.savefig("bandwidth_cols.png") +plt.savefig("throughput_cols.png") ##################### ## preconditionner ## @@ -97,8 +97,8 @@ plt.figure(figsize=(8, 6)) for nx, group_data in data_groups.items(): preconditionner_max_block_size = group_data["preconditionner_max_block_size"] - bandwidth = [group_data["bytes_per_second"][i] for i in range(len(preconditionner_max_block_size))] - plt.plot(preconditionner_max_block_size, bandwidth, marker='o', markersize=5, label=f'nx={nx}') + throughput = [group_data["bytes_per_second"][i] for i in range(len(preconditionner_max_block_size))] + plt.plot(preconditionner_max_block_size, throughput, marker='o', markersize=5, label=f'nx={nx}') x = [(int)(data["context"]["preconditionner_max_block_size_ref"]), (int)(data["context"]["preconditionner_max_block_size_ref"])*1.001]; plt.plot(x, [0.99*min([min(group_data["bytes_per_second"]) for nx, group_data in data_groups.items()]), 1.01*max([max(group_data["bytes_per_second"]) for nx, group_data in data_groups.items()])], linestyle='dotted', color='black', label='reference config') @@ -107,9 +107,9 @@ plt.grid() plt.xscale("log") plt.xlabel("preconditionner_max_block_size") -plt.ylabel("Bandwidth [B/s]") -plt.title("Bandwidth on "+str.upper(data["context"]["chip"])+" (with ny=100000)"); +plt.ylabel("Throughput [B/s]") +plt.title("Throughput on "+str.upper(data["context"]["chip"])+" (with ny=100000)"); plt.legend() -plt.savefig("bandwidth_precond.png") +plt.savefig("throughput_precond.png") plt.close();