-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathdemo.m
100 lines (99 loc) · 3.02 KB
/
demo.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
function [laKMM, laMM, BiGraph, A, OBJ, Ah, laKMMh] = demo(X, c, m, k)
% [laKMM, laMM, BiGraph, Anc, ~, ~, ~]= KMM(X', c, m,k) : K-Multiple-Means
% Input:
% - X: the data matrix of size nFea x nSmp, where each column is a sample
% point
% - c: the number of clusters
% - m: the number of multiple means(MM)
% - k: the number of neighbor points
% Output:
% - laKMM: the cluster assignment for each point
% - laMM: the sub-cluster assignment for each point
% - BiGraph: the matrix of size nSmp x nMM
% - A: the multiple means matrix of size nFea x nMM
% - Ah: the history of multiple means
% - laKMMh: the history of cluster assignment for each point
% Requre:
% CSBG.m
% meanInd.m
% ConstructA_NP.m
% EProjSimplex_new.m
% svd2uv.m
% struG2la.m
% eig1.m
% Usage:
% % X: d*n
% [laKMM, laMM, AnchorGraph, Anchors, ~, ~, ~]= KMM(X', c, m,k) ;
% Reference:
%
% Feiping Nie, Cheng-Long Wang, Xuelong Li, "K-Multiple-Means: A Multiple-Means
% Clustering Method with Specified K Clusters," In The 25th ACM SIGKDD Conference
% on Knowledge Discovery and Data Mining (KDD ’19), August 4–8, 2019, Anchorage, AK, USA.
%
% version 1.0 --May./2019
%
% Written by Cheng-Long Wang (ch.l.w.reason AT gmail.com)
if nargin < 4
if m<6
k=c-1;
else
k=5;
end
end
Ah=[];
laKMMh=[];
Iter=15;
OBJ=[];
n=size(X,2);
method=1; % method for initial seeds, 1:kmeans; 0:random
opt_conv=1; % option for convergence, 1:sub prototypes; 0:partiton of subclusters
% StartIndZ: before MM update
if method ==0
StartIndZ=randsrc(n,1,1:m);
else
StartIndZ=kmeans(X',m);
end
BiGraph = ones(n,m);
A = meanInd(X, StartIndZ,m,BiGraph);
[laKMM, laMM, BiGraph, isCov, obj, ~] = CSBG(X, c, A, k);
% fprintf('time:%d,obj:%d\n',ti,obj)
iter=1;
while(iter<Iter)
iter = iter +1;
if isCov
laKMMh=[laKMMh laKMM];
Ah=[Ah A];
OBJ=[OBJ obj];
if opt_conv==1
StartIndZ=laMM;
A_old = A;
A = meanInd(X, StartIndZ, m, BiGraph);
Dis = sqdist(A_old,A); % O(ndm)
distXt = Dis;
di = min(distXt, [], 2);
if norm(di)<1e-4
fprintf('means converge\n')
return;
end
else
if (all(StartIndZ==laMM))
fprintf('partition converge\n')
return;
else
StartIndZ=laMM;
A = meanInd(X, StartIndZ,m,BiGraph);
end
end
[laKMM, laMM, BiGraph, isCov, obj, ~] = CSBG(X, c, A, k);
else
if method ==0
StartIndZ=randsrc(n,1,1:m);
else
StartIndZ=kmeans(X',m);
end
BiGraph = ones(n,m);
A = meanInd(X, StartIndZ,m,BiGraph);
[laKMM, laMM, BiGraph, isCov, obj, ~] = CSBG(X, c, A, k);
end
fprintf('loop:%d\n',iter)
end