diff --git a/cif_mag.dic b/cif_mag.dic index bd60b82..eb43807 100644 --- a/cif_mag.dic +++ b/cif_mag.dic @@ -7,1222 +7,989 @@ data_MAGNETIC_CIF -_dictionary.title MAGNETIC_CIF -_dictionary.class Instance -_dictionary.version 0.9.9 -_dictionary.date 2023-07-17 -_dictionary.uri - https://raw.githubusercontent.com/COMCIFS/magnetic_dic/main/cif_mag.dic -_dictionary.ddl_conformance 3.11.09 -_dictionary.namespace CifCore -_description.text + _dictionary.title MAGNETIC_CIF + _dictionary.class Instance + _dictionary.version 0.9.9 + _dictionary.date 2023-07-17 + _dictionary.uri + https://raw.githubusercontent.com/COMCIFS/magnetic_dic/main/cif_mag.dic + _dictionary.ddl_conformance 3.11.09 + _dictionary.namespace CifCore + _description.text ; - The magnetic CIF dictionary is an extension to the core CIF dictionary. - It defines datanames for describing magnetic structures. + The magnetic CIF dictionary is an extension to the core CIF dictionary. + It defines datanames for describing magnetic structures. ; save_MAGNETIC -_definition.id MAGNETIC -_definition.scope Category -_definition.class Head -_name.category_id MAGNETIC_CIF -_name.object_id MAGNETIC -_description.text + _definition.id MAGNETIC + _definition.scope Category + _definition.class Head + _description.text ; - This category is the parent of all categories in the dictionary. - Head categories from other dictionaries are reparented to this category. + This category is the parent of all categories in the dictionary. + Head categories from other dictionaries are reparented to this category. ; -_import.get [{"file":"cif_ms.dic" "save":"MS_GROUP" "mode":"Full" "dupl":"Ignore"}] + _name.category_id MAGNETIC_CIF + _name.object_id MAGNETIC -save_ - - -################################### -## ATOM_SITE_FOURIER_WAVE_VECTOR ## -################################### + _import.get + [{'dupl':Ignore 'file':cif_ms.dic 'mode':Full 'save':MS_GROUP}] -save_atom_site_Fourier_wave_vector - -_definition.id atom_site_Fourier_wave_vector -_name.object_id atom_site_Fourier_wave_vector -_name.category_id MS_GROUP -_definition.update 2016-05-24 -_description.text -; - Data items in the ATOM_SITE_FOURIER_WAVE_VECTOR category record - details about the wave vectors of the Fourier terms used in the - structural model. This category is fully defined in the modulated - structures dictionary. -; -_definition.scope Category -_definition.class Loop - loop_ - _category_key.name '_atom_site_Fourier_wave_vector.seq_id' -loop_ - _description_example.case - _description_example.detail -# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -; - loop_ - _cell_wave_vector_seq_id - _cell_wave_vector_x - _cell_wave_vector_y - _cell_wave_vector_z - 1 0.30000 0.30000 0.00000 - 2 -0.60000 0.30000 0.00000 - loop_ - _atom_site_Fourier_wave_vector_seq_id - _atom_site_Fourier_wave_vector_x - _atom_site_Fourier_wave_vector_y - _atom_site_Fourier_wave_vector_z - _atom_site_Fourier_wave_vector_q_coeff - 1 -0.30000 0.60000 0.00000 [1 1] - 2 -0.60000 0.30000 0.00000 [0 1] - 3 -0.30000 -0.30000 0.00000 [-1 0] -; -; - Example 1 - Hypothetical example showing the modulation wave vector components - expressed using the array data item _atom_site_Fourier_wave_vector_q_coeff. -; -; -loop_ -_cell_wave_vector_seq_id -_cell_wave_vector_x -_cell_wave_vector_y -_cell_wave_vector_z - 1 0.30000 0.30000 0.00000 - 2 -0.60000 0.30000 0.00000 -loop_ -_atom_site_Fourier_wave_vector_seq_id -_atom_site_Fourier_wave_vector_x -_atom_site_Fourier_wave_vector_y -_atom_site_Fourier_wave_vector_z -_atom_site_Fourier_wave_vector_q1_coeff -_atom_site_Fourier_wave_vector_q2_coeff -1 -0.30000 0.60000 0.00000 1 1 -2 -0.60000 0.30000 0.00000 0 1 -3 -0.30000 -0.30000 0.00000 -1 0 -; -; - Example 1 - As example 1, but using separate data items for each - individual component of the modulation wave vector. -; -# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - save_ +save_ATOM_SITE_MOMENT -save_atom_site_Fourier_wave_vector.q1_coeff -_definition.id '_atom_site_Fourier_wave_vector.q1_coeff' -_name.category_id atom_site_Fourier_wave_vector -_name.object_id q1_coeff -loop_ - _alias.definition_id '_atom_site_Fourier_wave_vector_q1_coeff' -_definition.update 2016-06-21 -_description.text -; - For a given incommensurate modulation that contributes to the - structure, the wave vector of the modulation can be expressed as an - integer linear combination of the d independent wave vectors that - define the (3+d)-dimensional superspace. The q1_coeff tag holds the - integer coefficient of the contribution of the first independent wave - vector, the q2_coeff tag holds the integer coefficient of the - contribution of the second independent wave vector, and so on. At the - time of this writing, no examples with more than three independent - wave vectors are known, though there is no theoretical limit to the - number that could occur. These tags are not explicitly magnetic; they - are equally applicable to any incommensurate modulation. -; -_type.contents Integer -_type.container Single -loop_ - _method.purpose - _method.expression - Evaluation -; - with a as atom_site_Fourier_wave_vector - a.q1_coeff = a.q_coeff[0] -; -save_ - -save_atom_site_Fourier_wave_vector.q2_coeff -_definition.id '_atom_site_Fourier_wave_vector.q2_coeff' -_name.category_id atom_site_Fourier_wave_vector -_name.object_id q2_coeff -loop_ - _alias.definition_id '_atom_site_Fourier_wave_vector_q2_coeff' -_definition.update 2016-06-21 -_description.text + _definition.id ATOM_SITE_MOMENT + _definition.scope Category + _definition.class Loop + _definition.update 2016-05-24 + _description.text ; - For a given incommensurate modulation that contributes to the - structure, the wave vector of the modulation can be expressed as an - integer linear combination of the d independent wave vectors that - define the (3+d)-dimensional superspace. The q1_coeff tag holds the - integer coefficient of the contribution of the first independent wave - vector, the q2_coeff tag holds the integer coefficient of the - contribution of the second independent wave vector, and so on. At the - time of this writing, no examples with more than three independent - wave vectors are known, though there is no theoretical limit to the - number that could occur. These tags are not explicitly magnetic; they - are equally applicable to any incommensurate modulation. -; -_type.contents Integer -_type.container Single -loop_ - _method.purpose - _method.expression - Evaluation -; - with a as atom_site_Fourier_wave_vector - a.q2_coeff = a.q_coeff[1] + This category provides a loop for presenting the magnetic moments + of atoms in one of several coordinate systems. This is a child + category of the ATOM_SITE category, so that the magnetic moments + can either be listed alongside the non-magnetic atom properties + in the main ATOM_SITE loop, or be listed in a separate loop. ; + _name.category_id ATOM_SITE + _name.object_id ATOM_SITE_MOMENT + _category_key.name '_atom_site_moment.label' save_ -save_atom_site_Fourier_wave_vector.q3_coeff -_definition.id '_atom_site_Fourier_wave_vector.q3_coeff' -_name.category_id atom_site_Fourier_wave_vector -_name.object_id q3_coeff -loop_ - _alias.definition_id '_atom_site_Fourier_wave_vector_q3_coeff' -_definition.update 2016-06-21 -_description.text -; - For a given incommensurate modulation that contributes to the - structure, the wave vector of the modulation can be expressed as an - integer linear combination of the d independent wave vectors that - define the (3+d)-dimensional superspace. The q1_coeff tag holds the - integer coefficient of the contribution of the first independent wave - vector, the q2_coeff tag holds the integer coefficient of the - contribution of the second independent wave vector, and so on. At the - time of this writing, no examples with more than three independent - wave vectors are known, though there is no theoretical limit to the - number that could occur. These tags are not explicitly magnetic; they - are equally applicable to any incommensurate modulation. -; -_type.contents Integer -_type.container Single -save_ +save_atom_site_moment.cartn - -save_atom_site_Fourier_wave_vector.q_coeff - -_definition.id '_atom_site_Fourier_wave_vector.q_coeff' -_name.category_id atom_site_Fourier_wave_vector -_name.object_id q_coeff -loop_ - _alias.definition_id '_atom_site_Fourier_wave_vector_q_coeff' -_definition.update 2016-06-21 -_description.text + _definition.id '_atom_site_moment.Cartn' + _alias.definition_id '_atom_site_moment_Cartn' + _definition.update 2016-05-24 + _description.text ; - For a given incommensurate modulation that contributes to the - structure, the wave vector of the modulation can be expressed as an - integer linear combination of the d independent wave vectors that - define the (3+d)-dimensional superspace. This tag holds each of - the integer coefficients as an array. At the - time of this writing, no examples with more than three independent - wave vectors are known, though there is no theoretical limit to the - number that could occur. These tags are not explicitly magnetic; they - are equally applicable to any incommensurate modulation. + The atom-site magnetic moment vector specified according to a set + of orthogonal Cartesian axes where x||a and z||c* with y + completing a right-hand set. ; -_type.contents Integer -_type.container Array -_type.dimension '[]' -save_ - -###################### -## ATOM_SITE_MOMENT ## -###################### - -save_atom_site_moment - -_definition.id atom_site_moment -_name.category_id atom_site -_name.object_id atom_site_moment -_definition.update 2016-05-24 -_description.text -; - This category provides a loop for presenting the magnetic moments - of atoms in one of several coordinate systems. This is a child - category of the ATOM_SITE category, so that the magnetic moments - can either be listed alongside the non-magnetic atom properties - in the main ATOM_SITE loop, or be listed in a separate loop. -; -_definition.scope Category -_definition.class Loop -loop_ - _category_key.name '_atom_site_moment.label' - -save_ - - -save__atom_site_moment.Cartn - -_definition.id '_atom_site_moment.Cartn' -_name.category_id atom_site_moment -_name.object_id Cartn -loop_ - _alias.definition_id - '_atom_site_moment_Cartn' - -_definition.update 2016-05-24 -_description.text -; - The atom-site magnetic moment vector specified according to a set - of orthogonal Cartesian axes where x||a and z||c* with y - completing a right-hand set. -; -_type.contents Real -_type.dimension '[3]' -_type.container Matrix -_type.purpose Measurand -_units.code Bohr_magnetons -loop_ - _method.purpose - _method.expression - Evaluation + _name.category_id atom_site_moment + _name.object_id Cartn + _type.purpose Measurand + _type.source Assigned + _type.container Matrix + _type.dimension '[3]' + _type.contents Real + _units.code Bohr_magnetons + _method.purpose Evaluation + _method.expression ; with a as atom_site_moment a.Cartn = [a.Cartn_x,a.Cartn_y,a.Cartn_z] - ; save_ +save_atom_site_moment.cartn_x -save__atom_site_moment.Cartn_x - -_definition.id '_atom_site_moment.Cartn_x' -_name.category_id atom_site_moment -_name.object_id Cartn_x -loop_ - _alias.definition_id '_atom_site_moment_Cartn_x' -_definition.update 2016-05-24 -_type.contents Real -_type.container Single -_type.purpose Measurand -_description.text + _definition.id '_atom_site_moment.Cartn_x' + _alias.definition_id '_atom_site_moment_Cartn_x' + _definition.update 2016-05-24 + _description.text ; - The x component of the atom-site magnetic moment vector - (see _atom_site_moment.Cartn). + The x component of the atom-site magnetic moment vector + (see _atom_site_moment.Cartn). ; -_units.code Bohr_magnetons + _name.category_id atom_site_moment + _name.object_id Cartn_x + _type.purpose Measurand + _type.source Assigned + _type.container Single + _type.contents Real + _units.code Bohr_magnetons save_ +save_atom_site_moment.cartn_y -save__atom_site_moment.Cartn_y - -_definition.id '_atom_site_moment.Cartn_y' -_name.category_id atom_site_moment -_name.object_id Cartn_y -loop_ - _alias.definition_id '_atom_site_moment_Cartn_y' -_definition.update 2016-05-24 -_type.contents Real -_type.container Single -_type.purpose Measurand -_description.text + _definition.id '_atom_site_moment.Cartn_y' + _alias.definition_id '_atom_site_moment_Cartn_y' + _definition.update 2016-05-24 + _description.text ; - The y component of the atom-site magnetic moment vector - (see _atom_site_moment.Cartn). - + The y component of the atom-site magnetic moment vector + (see _atom_site_moment.Cartn). ; -_units.code Bohr_magnetons + _name.category_id atom_site_moment + _name.object_id Cartn_y + _type.purpose Measurand + _type.source Assigned + _type.container Single + _type.contents Real + _units.code Bohr_magnetons save_ +save_atom_site_moment.cartn_z -save__atom_site_moment.Cartn_z - -_definition.id '_atom_site_moment.Cartn_z' -_name.category_id atom_site_moment -_name.object_id Cartn_z -loop_ - _alias.definition_id '_atom_site_moment_Cartn_z' -_definition.update 2016-05-24 -_type.contents Real -_type.container Single -_type.purpose Measurand -_description.text + _definition.id '_atom_site_moment.Cartn_z' + _alias.definition_id '_atom_site_moment_Cartn_z' + _definition.update 2016-05-24 + _description.text ; - The z component of the atom-site magnetic moment vector - (see _atom_site_moment.Cartn). - + The z component of the atom-site magnetic moment vector + (see _atom_site_moment.Cartn). ; -_units.code Bohr_magnetons + _name.category_id atom_site_moment + _name.object_id Cartn_z + _type.purpose Measurand + _type.source Assigned + _type.container Single + _type.contents Real + _units.code Bohr_magnetons save_ +save_atom_site_moment.crystalaxis -save__atom_site_moment.crystalaxis - -_definition.id '_atom_site_moment.crystalaxis' -_name.category_id atom_site_moment -_name.object_id crystalaxis -loop_ - _alias.definition_id '_atom_site_moment_crystalaxis' -_definition.update 2016-05-24 -_description.text + _definition.id '_atom_site_moment.crystalaxis' + _alias.definition_id '_atom_site_moment_crystalaxis' + _definition.update 2016-05-24 + _description.text ; - The atom-site magnetic moment vector specified using components - parallel to each of the unit cell axes. This is the recommended - coordinate system for most magnetic structures. + The atom-site magnetic moment vector specified using components + parallel to each of the unit cell axes. This is the recommended + coordinate system for most magnetic structures. ; -_type.contents Real -_type.container Matrix -_type.dimension '[3]' -_type.purpose Measurand -_units.code Bohr_magnetons -loop_ - _method.purpose - _method.expression - Evaluation + _name.category_id atom_site_moment + _name.object_id crystalaxis + _type.purpose Measurand + _type.source Assigned + _type.container Matrix + _type.dimension '[3]' + _type.contents Real + _units.code Bohr_magnetons + _method.purpose Evaluation + _method.expression ; with a as atom_site_moment a.crystalaxis = [a.crystalaxis_x,a.crystalaxis_y,a.crystalaxis_z] - -; +; save_ +save_atom_site_moment.crystalaxis_x -save__atom_site_moment.crystalaxis_x - -_definition.id '_atom_site_moment.crystalaxis_x' -_name.category_id atom_site_moment -_name.object_id crystalaxis_x -loop_ - _alias.definition_id '_atom_site_moment_crystalaxis_x' -_definition.update 2016-05-24 -_type.contents Real -_type.container Single -_type.purpose Measurand -_description.text + _definition.id '_atom_site_moment.crystalaxis_x' + _alias.definition_id '_atom_site_moment_crystalaxis_x' + _definition.update 2016-05-24 + _description.text ; - The component of the atom-site magnetic-moment vector parallel to the first - unit-cell axis. See _atom_site_moment.crystalaxis. + The component of the atom-site magnetic-moment vector parallel to the first + unit-cell axis. See _atom_site_moment.crystalaxis. ; -_units.code Bohr_magnetons + _name.category_id atom_site_moment + _name.object_id crystalaxis_x + _type.purpose Measurand + _type.source Assigned + _type.container Single + _type.contents Real + _units.code Bohr_magnetons save_ +save_atom_site_moment.crystalaxis_y -save__atom_site_moment.crystalaxis_y - -_definition.id '_atom_site_moment.crystalaxis_y' -_name.category_id atom_site_moment -_name.object_id crystalaxis_y -loop_ - _alias.definition_id '_atom_site_moment_crystalaxis_y' -_definition.update 2016-05-24 -_type.contents Real -_type.container Single -_type.purpose Measurand -_description.text + _definition.id '_atom_site_moment.crystalaxis_y' + _alias.definition_id '_atom_site_moment_crystalaxis_y' + _definition.update 2016-05-24 + _description.text ; - The component of the atom-site magnetic-moment vector parallel to the second - unit-cell axis. See _atom_site_moment.crystalaxis. + The component of the atom-site magnetic-moment vector parallel to the second + unit-cell axis. See _atom_site_moment.crystalaxis. ; -_units.code Bohr_magnetons + _name.category_id atom_site_moment + _name.object_id crystalaxis_y + _type.purpose Measurand + _type.source Assigned + _type.container Single + _type.contents Real + _units.code Bohr_magnetons save_ +save_atom_site_moment.crystalaxis_z -save__atom_site_moment.crystalaxis_z - -_definition.id '_atom_site_moment.crystalaxis_z' -_name.category_id atom_site_moment -_name.object_id crystalaxis_z -loop_ - _alias.definition_id '_atom_site_moment_crystalaxis_z' -_definition.update 2016-05-24 -_type.contents Real -_type.container Single -_type.purpose Measurand -_description.text + _definition.id '_atom_site_moment.crystalaxis_z' + _alias.definition_id '_atom_site_moment_crystalaxis_z' + _definition.update 2016-05-24 + _description.text ; - The component of the atom-site magnetic-moment vector parallel to the third - unit-cell axis. See _atom_site_moment.crystalaxis. + The component of the atom-site magnetic-moment vector parallel to the third + unit-cell axis. See _atom_site_moment.crystalaxis. ; -_units.code Bohr_magnetons + _name.category_id atom_site_moment + _name.object_id crystalaxis_z + _type.purpose Measurand + _type.source Assigned + _type.container Single + _type.contents Real + _units.code Bohr_magnetons save_ +save_atom_site_moment.label -save__atom_site_moment.label + _definition.id '_atom_site_moment.label' + _alias.definition_id '_atom_site_moment_label' + _name.category_id atom_site_moment + _name.object_id label -_definition.id '_atom_site_moment.label' -_name.category_id atom_site_moment -_name.object_id label -loop_ - _alias.definition_id '_atom_site_moment_label' -_import.get [{"save":atom_site_id "file":templ_attr.cif}] + _import.get [{'file':templ_attr.cif 'save':atom_site_id}] save_ +save_atom_site_moment.magnitude -save__atom_site_moment.magnitude - -_definition.id '_atom_site_moment.magnitude' -_name.category_id atom_site_moment -_name.object_id magnitude -loop_ - _alias.definition_id '_atom_site_moment_magnitude' -_definition.update 2018-07-18 -_type.contents Real -_type.container Single -_type.purpose Measurand -_description.text + _definition.id '_atom_site_moment.magnitude' + _alias.definition_id '_atom_site_moment_magnitude' + _definition.update 2018-07-18 + _description.text ; - The magnitude of a magnetic moment vector. + The magnitude of a magnetic moment vector. ; -_units.code Bohr_magnetons + _name.category_id atom_site_moment + _name.object_id magnitude + _type.purpose Measurand + _type.source Assigned + _type.container Single + _type.contents Real + _units.code Bohr_magnetons + save_ -save__atom_site_moment.modulation_flag +save_atom_site_moment.modulation_flag -_definition.id '_atom_site_moment.modulation_flag' -_name.category_id atom_site_moment -_name.object_id modulation_flag -loop_ - _alias.definition_id '_atom_site_moment_modulation_flag' -_definition.update 2016-05-24 -_description.text + _definition.id '_atom_site_moment.modulation_flag' + _alias.definition_id '_atom_site_moment_modulation_flag' + _definition.update 2016-05-24 + _description.text ; - A code that signals whether the structural model includes the - modulation of the magnetic moment of a given atom site. + A code that signals whether the structural model includes the + modulation of the magnetic moment of a given atom site. ; -_type.contents Code -_type.container Single -loop_ - _enumeration_set.state - _enumeration_set.detail - 'yes' 'magnetic modulation' - 'y' 'abbreviation for "yes"' - 'no' 'no magnetic modulation' - 'n' 'abbreviation for "no"' + _name.category_id atom_site_moment + _name.object_id modulation_flag + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Code -save_ + loop_ + _enumeration_set.state + _enumeration_set.detail + yes 'magnetic modulation' + y 'abbreviation for "yes"' + no 'no magnetic modulation' + n 'abbreviation for "no"' +save_ -save__atom_site_moment.refinement_flags_magnetic +save_atom_site_moment.refinement_flags_magnetic -_definition.id '_atom_site_moment.refinement_flags_magnetic' -_name.category_id atom_site_moment -_name.object_id refinement_flags_magnetic -loop_ - _alias.definition_id '_atom_site_moment_refinement_flags_magnetic' -_definition.update 2016-05-24 -_type.container Single -_type.purpose State -_description.text + _definition.id '_atom_site_moment.refinement_flags_magnetic' + _alias.definition_id '_atom_site_moment_refinement_flags_magnetic' + _definition.update 2016-05-24 + _description.text ; The constraints/restraints placed on the magnetic moment during model refinement. ; -_type.contents Code -loop_ - _enumeration_set.state - _enumeration_set.detail - . 'no constraint on magnetic moment' - S 'special position constraint on magnetic moment' - M 'modulus restraint on magnetic moment' - A 'direction restraints on magnetic moment' - SM 'superposition of S and M constraints/restraints' - SA 'superposition of S and A constraints/restraints' - MA 'superposition of M and A constraints/restraints' - SMA 'superposition of S, M and A constraints/restraints' + _name.category_id atom_site_moment + _name.object_id refinement_flags_magnetic + _type.purpose State + _type.source Assigned + _type.container Single + _type.contents Code -save_ + loop_ + _enumeration_set.state + _enumeration_set.detail + . 'no constraint on magnetic moment' + S 'special position constraint on magnetic moment' + M 'modulus restraint on magnetic moment' + A 'direction restraints on magnetic moment' + SM 'superposition of S and M constraints/restraints' + SA 'superposition of S and A constraints/restraints' + MA 'superposition of M and A constraints/restraints' + SMA 'superposition of S, M and A constraints/restraints' +save_ -save__atom_site_moment.spherical_azimuthal +save_atom_site_moment.spherical_azimuthal -_definition.id '_atom_site_moment.spherical_azimuthal' -_name.category_id atom_site_moment -_name.object_id spherical_azimuthal -loop_ - _alias.definition_id '_atom_site_moment_spherical_azimuthal' -_definition.update 2016-05-24 -_enumeration.range 0.0:6.2831854 -_units.code radians -_description.text + _definition.id '_atom_site_moment.spherical_azimuthal' + _alias.definition_id '_atom_site_moment_spherical_azimuthal' + _definition.update 2016-05-24 + _description.text ; - The azimuthal angle of the atom-site magnetic moment vector - specified in spherical coordinates relative to a set of - orthogonal Cartesian axes where x||a and z||c* with y completing - a right-hand set. The azimuthal angle is a right-handed rotation - around the +z axis starting from the +x side of the x-z plane. + The azimuthal angle of the atom-site magnetic moment vector + specified in spherical coordinates relative to a set of + orthogonal Cartesian axes where x||a and z||c* with y completing + a right-hand set. The azimuthal angle is a right-handed rotation + around the +z axis starting from the +x side of the x-z plane. ; -_type.contents Real -_type.container Single -_type.purpose Measurand + _name.category_id atom_site_moment + _name.object_id spherical_azimuthal + _type.purpose Measurand + _type.source Assigned + _type.container Single + _type.contents Real + _enumeration.range 0.0:6.2831854 + _units.code radians save_ +save_atom_site_moment.spherical_modulus -save__atom_site_moment.spherical_modulus - -_definition.id '_atom_site_moment.spherical_modulus' -_name.category_id atom_site_moment -_name.object_id spherical_modulus -loop_ - _alias.definition_id '_atom_site_moment_spherical_modulus' -_definition.update 2016-05-24 -_units.code Bohr_magnetons -_description.text + _definition.id '_atom_site_moment.spherical_modulus' + _alias.definition_id '_atom_site_moment_spherical_modulus' + _definition.update 2016-05-24 + _description.text ; - The modulus of the atom-site magnetic moment vector specified in - spherical coordinates relative to a set of orthogonal Cartesian - axes where x||a and z||c* with y completing a right-hand set. + The modulus of the atom-site magnetic moment vector specified in + spherical coordinates relative to a set of orthogonal Cartesian + axes where x||a and z||c* with y completing a right-hand set. ; -_type.contents Real -_type.container Single -_type.purpose Measurand -save_ + _name.category_id atom_site_moment + _name.object_id spherical_modulus + _type.purpose Measurand + _type.source Assigned + _type.container Single + _type.contents Real + _units.code Bohr_magnetons +save_ -save__atom_site_moment.spherical_polar +save_atom_site_moment.spherical_polar -_definition.id '_atom_site_moment.spherical_polar' -_name.category_id atom_site_moment -_name.object_id spherical_polar -loop_ - _alias.definition_id '_atom_site_moment_spherical_polar' -_definition.update 2016-05-24 -_enumeration.range 0.0:3.1415927 -_units.code radians -_description.text + _definition.id '_atom_site_moment.spherical_polar' + _alias.definition_id '_atom_site_moment_spherical_polar' + _definition.update 2016-05-24 + _description.text ; - The polar angle of the atom-site magnetic moment vector specified - in spherical coordinates relative to a set of orthogonal - Cartesian axes where x||a and z||c* with y completing a - right-hand set. The polar angle is measured relative to the +z axis. + The polar angle of the atom-site magnetic moment vector specified + in spherical coordinates relative to a set of orthogonal + Cartesian axes where x||a and z||c* with y completing a + right-hand set. The polar angle is measured relative to the +z axis. ; -_type.contents Real -_type.container Single -_type.purpose Measurand + _name.category_id atom_site_moment + _name.object_id spherical_polar + _type.purpose Measurand + _type.source Assigned + _type.container Single + _type.contents Real + _enumeration.range 0.0:3.1415927 + _units.code radians save_ +save_atom_site_moment.symmform -save__atom_site_moment.symmform + _definition.id '_atom_site_moment.symmform' + _alias.definition_id '_atom_site_moment_symmform' + _definition.update 2016-05-24 + _description.text +; + A symbolic expression that indicates the symmetry-restricted form + of the components of the magnetic moment vector of the atom. + Unlike the positional coordinates of an atom, its magnetic moment + has no translational component to be represented. +; + _name.category_id atom_site_moment + _name.object_id symmform + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Text -_definition.id '_atom_site_moment.symmform' -_name.category_id atom_site_moment -_name.object_id symmform -loop_ - _alias.definition_id '_atom_site_moment_symmform' -_definition.update 2016-05-24 -_description.text + loop_ + _description_example.case + _description_example.detail + mx,my,mz +; + no symmetry restrictions ; - A symbolic expression that indicates the symmetry-restricted form - of the components of the magnetic moment vector of the atom. - Unlike the positional coordinates of an atom, its magnetic moment - has no translational component to be represented. + mx,-mx,0 ; -_type.contents Text -_type.container Single -loop_ - _description_example.case - _description_example.detail - 'mx,my,mz' 'no symmetry restrictions' - 'mx,-mx,0' -; y component equal and opposite to x component - with z component zero + y component equal and opposite to x component + with z component zero +; + mx,0,mz +; + y component zero ; - 'mx,0,mz' 'y component zero' save_ +save_ATOM_SITE_ROTATION -save_atom_site_rotation - -_definition.id atom_site_rotation -_name.category_id atom_site -_name.object_id atom_site_rotation -_definition.update 2018-07-18 -_description.text + _definition.id ATOM_SITE_ROTATION + _definition.scope Category + _definition.class Loop + _definition.update 2018-07-18 + _description.text ; - This category provides a loop for presenting atom-site axial-vector - rotations in several coordinate systems. Such axial vectors can - be applied to describe the rotations of molecular or polyhedral - rigid bodies about their pivot atoms or sites, though the use of this - category to describe patterns of rotations does not require the - that rigid bodies be explicitly defined. Because magnetic moments - and rotations are both axial rather than polar vectors, their - descriptive requirements are highly analogous, except that static - rotations are insensitive to time-reversal, so that normal (non- - magnetic) symmetry groups are appropriate. This is a child category - of the ATOM_SITE category, though pivot-site rotations will typically - be listed in a separate loop; the category items mirror those of defined - for the _ATOM_SITE_MOMENT category. + This category provides a loop for presenting atom-site axial-vector + rotations in several coordinate systems. Such axial vectors can + be applied to describe the rotations of molecular or polyhedral + rigid bodies about their pivot atoms or sites, though the use of this + category to describe patterns of rotations does not require the + that rigid bodies be explicitly defined. Because magnetic moments + and rotations are both axial rather than polar vectors, their + descriptive requirements are highly analogous, except that static + rotations are insensitive to time-reversal, so that normal (non- + magnetic) symmetry groups are appropriate. This is a child category + of the ATOM_SITE category, though pivot-site rotations will typically + be listed in a separate loop; the category items mirror those of defined + for the _ATOM_SITE_MOMENT category. ; -_definition.scope Category -_definition.class Loop -loop_ - _category_key.name '_atom_site_rotation.label' + _name.category_id ATOM_SITE + _name.object_id ATOM_SITE_ROTATION + _category_key.name '_atom_site_rotation.label' save_ +save_atom_site_rotation.cartn -save__atom_site_rotation.Cartn - -_definition.id '_atom_site_rotation.Cartn' -_name.category_id atom_site_rotation -_name.object_id Cartn -loop_ - _alias.definition_id - '_atom_site_rotation_Cartn' - -_definition.update 2018-07-18 -_description.text + _definition.id '_atom_site_rotation.Cartn' + _alias.definition_id '_atom_site_rotation_Cartn' + _definition.update 2018-07-18 + _description.text ; - The atom-site rotation vector specified according to a set - of orthogonal Cartesian axes where x||a and z||c* with y - completing a right-hand set. + The atom-site rotation vector specified according to a set + of orthogonal Cartesian axes where x||a and z||c* with y + completing a right-hand set. ; -_type.contents Real -_type.dimension '[3]' -_type.container Matrix -_type.purpose Measurand -_units.code radians -loop_ - _method.purpose - _method.expression - Evaluation + _name.category_id atom_site_rotation + _name.object_id Cartn + _type.purpose Measurand + _type.source Assigned + _type.container Matrix + _type.dimension '[3]' + _type.contents Real + _units.code radians + _method.purpose Evaluation + _method.expression ; with a as atom_site_rotation a.Cartn = [a.Cartn_x,a.Cartn_y,a.Cartn_z] - ; save_ +save_atom_site_rotation.cartn_x -save__atom_site_rotation.Cartn_x - -_definition.id '_atom_site_rotation.Cartn_x' -_name.category_id atom_site_rotation -_name.object_id Cartn_x -loop_ - _alias.definition_id '_atom_site_rotation_Cartn_x' -_definition.update 2018-07-18 -_type.contents Real -_type.container Single -_type.purpose Measurand -_description.text + _definition.id '_atom_site_rotation.Cartn_x' + _alias.definition_id '_atom_site_rotation_Cartn_x' + _definition.update 2018-07-18 + _description.text ; - The x component of the atom-site rotation vector - (see _atom_site_rotation.Cartn). + The x component of the atom-site rotation vector + (see _atom_site_rotation.Cartn). ; -_units.code radians + _name.category_id atom_site_rotation + _name.object_id Cartn_x + _type.purpose Measurand + _type.source Assigned + _type.container Single + _type.contents Real + _units.code radians save_ +save_atom_site_rotation.cartn_y -save__atom_site_rotation.Cartn_y - -_definition.id '_atom_site_rotation.Cartn_y' -_name.category_id atom_site_rotation -_name.object_id Cartn_y -loop_ - _alias.definition_id '_atom_site_rotation_Cartn_y' -_definition.update 2018-07-18 -_type.contents Real -_type.container Single -_type.purpose Measurand -_description.text + _definition.id '_atom_site_rotation.Cartn_y' + _alias.definition_id '_atom_site_rotation_Cartn_y' + _definition.update 2018-07-18 + _description.text ; - The y component of the atom-site rotation vector - (see _atom_site_rotation.Cartn). - + The y component of the atom-site rotation vector + (see _atom_site_rotation.Cartn). ; -_units.code radians + _name.category_id atom_site_rotation + _name.object_id Cartn_y + _type.purpose Measurand + _type.source Assigned + _type.container Single + _type.contents Real + _units.code radians save_ +save_atom_site_rotation.cartn_z -save__atom_site_rotation.Cartn_z - -_definition.id '_atom_site_rotation.Cartn_z' -_name.category_id atom_site_rotation -_name.object_id Cartn_z -loop_ - _alias.definition_id '_atom_site_rotation_Cartn_z' -_definition.update 2018-07-18 -_type.contents Real -_type.container Single -_type.purpose Measurand -_description.text + _definition.id '_atom_site_rotation.Cartn_z' + _alias.definition_id '_atom_site_rotation_Cartn_z' + _definition.update 2018-07-18 + _description.text ; - The z component of the atom-site rotation vector - (see _atom_site_rotation.Cartn). - + The z component of the atom-site rotation vector + (see _atom_site_rotation.Cartn). ; -_units.code radians + _name.category_id atom_site_rotation + _name.object_id Cartn_z + _type.purpose Measurand + _type.source Assigned + _type.container Single + _type.contents Real + _units.code radians save_ +save_atom_site_rotation.crystalaxis -save__atom_site_rotation.crystalaxis - -_definition.id '_atom_site_rotation.crystalaxis' -_name.category_id atom_site_rotation -_name.object_id crystalaxis -loop_ - _alias.definition_id '_atom_site_rotation_crystalaxis' -_definition.update 2018-07-18 -_description.text + _definition.id '_atom_site_rotation.crystalaxis' + _alias.definition_id '_atom_site_rotation_crystalaxis' + _definition.update 2018-07-18 + _description.text ; - The atom-site rotation vector specified using the components parallel - to each of the unit cell axes. This is the recommended coordinate - system for presenting axial rotation vectors. + The atom-site rotation vector specified using the components parallel + to each of the unit cell axes. This is the recommended coordinate + system for presenting axial rotation vectors. ; -_type.contents Real -_type.container Matrix -_type.dimension '[3]' -_type.purpose Measurand -_units.code radians -loop_ - _method.purpose - _method.expression - Evaluation + _name.category_id atom_site_rotation + _name.object_id crystalaxis + _type.purpose Measurand + _type.source Assigned + _type.container Matrix + _type.dimension '[3]' + _type.contents Real + _units.code radians + _method.purpose Evaluation + _method.expression ; with a as atom_site_rotation a.crystalaxis = [a.crystalaxis_x,a.crystalaxis_y,a.crystalaxis_z] - -; +; save_ +save_atom_site_rotation.crystalaxis_x -save__atom_site_rotation.crystalaxis_x - -_definition.id '_atom_site_rotation.crystalaxis_x' -_name.category_id atom_site_rotation -_name.object_id crystalaxis_x -loop_ - _alias.definition_id '_atom_site_rotation_crystalaxis_x' -_definition.update 2018-07-18 -_type.contents Real -_type.container Single -_type.purpose Measurand -_description.text + _definition.id '_atom_site_rotation.crystalaxis_x' + _alias.definition_id '_atom_site_rotation_crystalaxis_x' + _definition.update 2018-07-18 + _description.text ; - The component of the atom-site rotation vector parallel to the first unit-cell axis. See _atom_site_rotation.crystalaxis. + The component of the atom-site rotation vector parallel to the first + unit-cell axis. See _atom_site_rotation.crystalaxis. ; -_units.code radians + _name.category_id atom_site_rotation + _name.object_id crystalaxis_x + _type.purpose Measurand + _type.source Assigned + _type.container Single + _type.contents Real + _units.code radians save_ +save_atom_site_rotation.crystalaxis_y -save__atom_site_rotation.crystalaxis_y - -_definition.id '_atom_site_rotation.crystalaxis_y' -_name.category_id atom_site_rotation -_name.object_id crystalaxis_y -loop_ - _alias.definition_id '_atom_site_rotation_crystalaxis_y' -_definition.update 2018-07-18 -_type.contents Real -_type.container Single -_type.purpose Measurand -_description.text + _definition.id '_atom_site_rotation.crystalaxis_y' + _alias.definition_id '_atom_site_rotation_crystalaxis_y' + _definition.update 2018-07-18 + _description.text ; - The component of the atom-site rotation vector parallel to the second -unit-cell axis. See _atom_site_rotation.crystalaxis. + The component of the atom-site rotation vector parallel to the second + unit-cell axis. See _atom_site_rotation.crystalaxis. ; -_units.code radians + _name.category_id atom_site_rotation + _name.object_id crystalaxis_y + _type.purpose Measurand + _type.source Assigned + _type.container Single + _type.contents Real + _units.code radians save_ +save_atom_site_rotation.crystalaxis_z -save__atom_site_rotation.crystalaxis_z - -_definition.id '_atom_site_rotation.crystalaxis_z' -_name.category_id atom_site_rotation -_name.object_id crystalaxis_z -loop_ - _alias.definition_id '_atom_site_rotation_crystalaxis_z' -_definition.update 2018-07-18 -_type.contents Real -_type.container Single -_type.purpose Measurand -_description.text + _definition.id '_atom_site_rotation.crystalaxis_z' + _alias.definition_id '_atom_site_rotation_crystalaxis_z' + _definition.update 2018-07-18 + _description.text ; - The component of the atom-site rotation vector parallel to the third unit-cell axis. See _atom_site_rotation.crystalaxis. + The component of the atom-site rotation vector parallel to the third + unit-cell axis. See _atom_site_rotation.crystalaxis. ; -_units.code radians + _name.category_id atom_site_rotation + _name.object_id crystalaxis_z + _type.purpose Measurand + _type.source Assigned + _type.container Single + _type.contents Real + _units.code radians save_ +save_atom_site_rotation.label -save__atom_site_rotation.label + _definition.id '_atom_site_rotation.label' + _alias.definition_id '_atom_site_rotation_label' + _name.category_id atom_site_rotation + _name.object_id label -_definition.id '_atom_site_rotation.label' -_name.category_id atom_site_rotation -_name.object_id label -loop_ - _alias.definition_id '_atom_site_rotation_label' -_import.get [{"save":atom_site_id "file":templ_attr.cif}] + _import.get [{'file':templ_attr.cif 'save':atom_site_id}] save_ +save_atom_site_rotation.magnitude -save__atom_site_rotation.modulation_flag - -_definition.id '_atom_site_rotation.modulation_flag' -_name.category_id atom_site_rotation -_name.object_id modulation_flag -loop_ - _alias.definition_id '_atom_site_rotation_modulation_flag' -_definition.update 2018-07-18 -_description.text + _definition.id '_atom_site_rotation.magnitude' + _alias.definition_id '_atom_site_rotation_magnitude' + _definition.update 2018-07-18 + _description.text ; - A code that signals whether the structural model includes the - modulation of the rotation of a given atom site. + The magnitude of a rotation vector. ; -_type.contents Code -_type.container Single -loop_ - _enumeration_set.state - _enumeration_set.detail - 'yes' 'rotational modulation' - 'y' 'abbreviation for "yes"' - 'no' 'no rotational modulation' - 'n' 'abbreviation for "no"' + _name.category_id atom_site_rotation + _name.object_id magnitude + _type.purpose Measurand + _type.source Assigned + _type.container Single + _type.contents Real + _units.code radians save_ +save_atom_site_rotation.modulation_flag -save__atom_site_rotation.refinement_flags_rotational - -_definition.id '_atom_site_rotation.refinement_flags_rotational' -_name.category_id atom_site_rotation -_name.object_id refinement_flags_rotational -loop_ - _alias.definition_id '_atom_site_rotation_refinement_flags_rotational' -_definition.update 2018-07-18 -_type.container Single -_type.purpose State -_description.text + _definition.id '_atom_site_rotation.modulation_flag' + _alias.definition_id '_atom_site_rotation_modulation_flag' + _definition.update 2018-07-18 + _description.text ; - The constraints/restraints placed on the rotation vector during - model refinement. + A code that signals whether the structural model includes the + modulation of the rotation of a given atom site. ; -_type.contents Code -loop_ - _enumeration_set.state - _enumeration_set.detail - . 'no constraint on rotation' - S 'special position constraint on rotation' - M 'modulus restraint on rotation' - A 'direction restraints on rotation' - SM 'superposition of S and M constraints/restraints' - SA 'superposition of S and A constraints/restraints' - MA 'superposition of M and A constraints/restraints' - SMA 'superposition of S, M and A constraints/restraints' + _name.category_id atom_site_rotation + _name.object_id modulation_flag + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Code -save_ + loop_ + _enumeration_set.state + _enumeration_set.detail + yes 'rotational modulation' + y 'abbreviation for "yes"' + no 'no rotational modulation' + n 'abbreviation for "no"' +save_ -save__atom_site_rotation.spherical_azimuthal +save_atom_site_rotation.refinement_flags_rotational -_definition.id '_atom_site_rotation.spherical_azimuthal' -_name.category_id atom_site_rotation -_name.object_id spherical_azimuthal -loop_ - _alias.definition_id '_atom_site_rotation_spherical_azimuthal' -_definition.update 2018-07-18 -_enumeration.range 0.0:6.2831854 -_units.code radians -_description.text + _definition.id + '_atom_site_rotation.refinement_flags_rotational' + _alias.definition_id + '_atom_site_rotation_refinement_flags_rotational' + _definition.update 2018-07-18 + _description.text ; - The azimuthal angle of the atom-site rotation vector - specified in spherical coordinates relative to a set of - orthogonal Cartesian axes where x||a and z||c* with y completing - a right-hand set. The azimuthal angle is a right-handed rotation - around the +z axis starting from the +x side of the x-z plane. + The constraints/restraints placed on the rotation vector during + model refinement. ; -_type.contents Real -_type.container Single -_type.purpose Measurand + _name.category_id atom_site_rotation + _name.object_id refinement_flags_rotational + _type.purpose State + _type.source Assigned + _type.container Single + _type.contents Code -save_ + loop_ + _enumeration_set.state + _enumeration_set.detail + . 'no constraint on rotation' + S 'special position constraint on rotation' + M 'modulus restraint on rotation' + A 'direction restraints on rotation' + SM 'superposition of S and M constraints/restraints' + SA 'superposition of S and A constraints/restraints' + MA 'superposition of M and A constraints/restraints' + SMA 'superposition of S, M and A constraints/restraints' +save_ -save__atom_site_rotation.spherical_modulus +save_atom_site_rotation.spherical_azimuthal -_definition.id '_atom_site_rotation.spherical_modulus' -_name.category_id atom_site_rotation -_name.object_id spherical_modulus -loop_ - _alias.definition_id '_atom_site_rotation_spherical_modulus' -_definition.update 2018-07-18 -_units.code radians -_description.text + _definition.id '_atom_site_rotation.spherical_azimuthal' + _alias.definition_id '_atom_site_rotation_spherical_azimuthal' + _definition.update 2018-07-18 + _description.text ; - The modulus of the atom-site rotation vector specified in - spherical coordinates relative to a set of orthogonal Cartesian - axes where x||a and z||c* with y completing a right-hand set. + The azimuthal angle of the atom-site rotation vector + specified in spherical coordinates relative to a set of + orthogonal Cartesian axes where x||a and z||c* with y completing + a right-hand set. The azimuthal angle is a right-handed rotation + around the +z axis starting from the +x side of the x-z plane. ; -_type.contents Real -_type.container Single -_type.purpose Measurand -save_ + _name.category_id atom_site_rotation + _name.object_id spherical_azimuthal + _type.purpose Measurand + _type.source Assigned + _type.container Single + _type.contents Real + _enumeration.range 0.0:6.2831854 + _units.code radians +save_ -save__atom_site_rotation.spherical_polar +save_atom_site_rotation.spherical_modulus -_definition.id '_atom_site_rotation.spherical_polar' -_name.category_id atom_site_rotation -_name.object_id spherical_polar -loop_ - _alias.definition_id '_atom_site_rotation_spherical_polar' -_definition.update 2018-07-18 -_enumeration.range 0.0:3.1415927 -_units.code radians -_description.text + _definition.id '_atom_site_rotation.spherical_modulus' + _alias.definition_id '_atom_site_rotation_spherical_modulus' + _definition.update 2018-07-18 + _description.text ; - The polar angle of the atom-site rotation vector specified - in spherical coordinates relative to a set of orthogonal - Cartesian axes where x||a and z||c* with y completing a - right-hand set. The polar angle is measured relative to the +z axis. + The modulus of the atom-site rotation vector specified in + spherical coordinates relative to a set of orthogonal Cartesian + axes where x||a and z||c* with y completing a right-hand set. ; -_type.contents Real -_type.container Single -_type.purpose Measurand + _name.category_id atom_site_rotation + _name.object_id spherical_modulus + _type.purpose Measurand + _type.source Assigned + _type.container Single + _type.contents Real + _units.code radians save_ +save_atom_site_rotation.spherical_polar -save__atom_site_rotation.symmform - -_definition.id '_atom_site_rotation.symmform' -_name.category_id atom_site_rotation -_name.object_id symmform -loop_ - _alias.definition_id '_atom_site_rotation_symmform' -_definition.update 2018-07-18 -_description.text -; - A symbolic expression that indicates the symmetry-restricted form - of the components of the rotation vector of the atom. - Unlike the positional coordinates of an atom, its rotation - has no translational component to be represented. + _definition.id '_atom_site_rotation.spherical_polar' + _alias.definition_id '_atom_site_rotation_spherical_polar' + _definition.update 2018-07-18 + _description.text ; -_type.contents Text -_type.container Single -loop_ - _description_example.case - _description_example.detail - 'rx,ry,rz' 'no symmetry restrictions' - 'rx,-rx,0' -; y component equal and opposite to x component - with z component zero + The polar angle of the atom-site rotation vector specified + in spherical coordinates relative to a set of orthogonal + Cartesian axes where x||a and z||c* with y completing a + right-hand set. The polar angle is measured relative to the +z axis. ; - 'rx,0,rz' 'y component zero' + _name.category_id atom_site_rotation + _name.object_id spherical_polar + _type.purpose Measurand + _type.source Assigned + _type.container Single + _type.contents Real + _enumeration.range 0.0:3.1415927 + _units.code radians save_ +save_atom_site_rotation.symmform -save__atom_site_rotation.magnitude - -_definition.id '_atom_site_rotation.magnitude' -_name.category_id atom_site_rotation -_name.object_id magnitude -loop_ - _alias.definition_id '_atom_site_rotation_magnitude' -_definition.update 2018-07-18 -_type.contents Real -_type.container Single -_type.purpose Measurand -_description.text + _definition.id '_atom_site_rotation.symmform' + _alias.definition_id '_atom_site_rotation_symmform' + _definition.update 2018-07-18 + _description.text ; - The magnitude of a rotation vector. + A symbolic expression that indicates the symmetry-restricted form + of the components of the rotation vector of the atom. + Unlike the positional coordinates of an atom, its rotation + has no translational component to be represented. ; -_units.code radians -save_ + _name.category_id atom_site_rotation + _name.object_id symmform + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Text - -save_atom_site_moment_Fourier - -_definition.id atom_site_moment_Fourier -_name.category_id MAGNETIC -_name.object_id atom_site_moment_Fourier -_definition.update 2016-05-24 -_description.text + loop_ + _description_example.case + _description_example.detail + rx,ry,rz +; + no symmetry restrictions ; - Data items in the ATOM_SITE_MOMENT_FOURIER category record - details about the Fourier components of the magnetic modulation - of an atom site in a modulated structure. The (in general - complex) coefficients of each Fourier component belong to the - child category ATOM_SITE_MOMENT_FOURIER_PARAM, which may be - listed separately. + rx,-rx,0 +; + y component equal and opposite to x component + with z component zero +; + rx,0,rz +; + y component zero ; -_definition.scope Category -_definition.class Loop -loop_ - _category_key.name - '_atom_site_moment_Fourier.id' save_ +save_ATOM_SITE_MOMENT_FOURIER -save__atom_site_moment_Fourier.atom_site_label - -_definition.id '_atom_site_moment_Fourier.atom_site_label' -_name.category_id atom_site_moment_Fourier -_name.object_id atom_site_label -_definition.update 2016-05-24 - -_description.text + _definition.id ATOM_SITE_MOMENT_FOURIER + _definition.scope Category + _definition.class Loop + _definition.update 2016-05-24 + _description.text ; - This string uniquely identifies the atom for which the Fourier - modulation components are to be specified. The Fourier - modulation components are always presented in a separate loop - (not in the ATOM_SITE loop). This string must match an - _atom_site.label from the ATOM_SITE loop, and otherwise conform - to the rules for _atom_site_label. + Data items in the ATOM_SITE_MOMENT_FOURIER category record + details about the Fourier components of the magnetic modulation + of an atom site in a modulated structure. The (in general + complex) coefficients of each Fourier component belong to the + child category ATOM_SITE_MOMENT_FOURIER_PARAM, which may be + listed separately. ; -_type.contents Word -_type.container Single -_type.purpose Link -_type.source Assigned -_name.linked_item_id '_atom_site_moment.label' + _name.category_id MAGNETIC + _name.object_id ATOM_SITE_MOMENT_FOURIER + _category_key.name '_atom_site_moment_Fourier.id' save_ +save_atom_site_moment_fourier.atom_site_label -save__atom_site_moment_Fourier.axis - -_definition.id '_atom_site_moment_Fourier.axis' -_name.category_id atom_site_moment_Fourier -_name.object_id axis -_definition.update 2016-05-24 -_description.text + _definition.id '_atom_site_moment_Fourier.atom_site_label' + _definition.update 2016-05-24 + _description.text ; - Specifies the coordinate system in which the Fourier modulation - components are to be presented and an axis in that coordinate - system. - - Analogous tags: msCIF:_atom_site_displace_Fourier.axis, - msCIF:_atom_site_rot_Fourier.axis, - msCIF:_atom_site_U_Fourier.tens_elem + This string uniquely identifies the atom for which the Fourier + modulation components are to be specified. The Fourier + modulation components are always presented in a separate loop + (not in the ATOM_SITE loop). This string must match an + _atom_site.label from the ATOM_SITE loop, and otherwise conform + to the rules for _atom_site_label. ; -_type.contents Code -_type.container Single -_type.source Assigned -_type.purpose State -loop_ - _enumeration_set.state - _enumeration_set.detail - Cx 'Cartesian x coordinate' - Cy 'Cartesian y coordinate' - Cz 'Cartesian z coordinate' - x 'crystal a-axis coordinate' - y 'crystal b-axis coordinate' - z 'crystal c-axis coordinate' - mod 'length part of spherical coordinate' - pol 'polar angle in spherical coordinates' - azi 'azimuthal angle in spherical coordinates' - a1 'user-defined coordinate 1' - a2 'user-defined coordinate 2' - a3 'user-defined coordinate 3' + _name.category_id atom_site_moment_Fourier + _name.object_id atom_site_label + _name.linked_item_id '_atom_site_moment.label' + _type.purpose Link + _type.source Assigned + _type.container Single + _type.contents Word save_ +save_atom_site_moment_fourier.axis -save__atom_site_moment_Fourier.id - -_definition.id '_atom_site_moment_Fourier.id' -_name.category_id atom_site_moment_Fourier -_name.object_id id -_definition.update 2016-05-24 - -_description.text + _definition.id '_atom_site_moment_Fourier.axis' + _definition.update 2016-05-24 + _description.text ; - An arbitrary code that uniquely identifies each of the components - of each of the magnetic Fourier modulations of each of the atoms - in the structure. It will typically include an atom name, a - wave-vector id, and a coordinate axis. A sequence of positive - integers could also be used. + Specifies the coordinate system in which the Fourier modulation + components are to be presented and an axis in that coordinate + system. + + Analogous tags: msCIF:_atom_site_displace_Fourier.axis, + msCIF:_atom_site_rot_Fourier.axis, + msCIF:_atom_site_U_Fourier.tens_elem ; -_type.contents Text -_type.container Single -_type.purpose Key -loop_ - _description_example.case - K2_1_z - Se1_2_x + _name.category_id atom_site_moment_Fourier + _name.object_id axis + _type.purpose State + _type.source Assigned + _type.container Single + _type.contents Code -save_ + loop_ + _enumeration_set.state + _enumeration_set.detail + Cx 'Cartesian x coordinate' + Cy 'Cartesian y coordinate' + Cz 'Cartesian z coordinate' + x 'crystal a-axis coordinate' + y 'crystal b-axis coordinate' + z 'crystal c-axis coordinate' + mod 'length part of spherical coordinate' + pol 'polar angle in spherical coordinates' + azi 'azimuthal angle in spherical coordinates' + a1 'user-defined coordinate 1' + a2 'user-defined coordinate 2' + a3 'user-defined coordinate 3' + +save_ + +save_atom_site_moment_fourier.id + + _definition.id '_atom_site_moment_Fourier.id' + _definition.update 2016-05-24 + _description.text +; + An arbitrary code that uniquely identifies each of the components + of each of the magnetic Fourier modulations of each of the atoms + in the structure. It will typically include an atom name, a + wave-vector id, and a coordinate axis. A sequence of positive + integers could also be used. +; + _name.category_id atom_site_moment_Fourier + _name.object_id id + _type.purpose Key + _type.source Assigned + _type.container Single + _type.contents Text + loop_ + _description_example.case + K2_1_z + Se1_2_x -save__atom_site_moment_Fourier.wave_vector_seq_id +save_ -_definition.id '_atom_site_moment_Fourier.wave_vector_seq_id' -_name.category_id atom_site_moment_Fourier -_name.object_id wave_vector_seq_id -_definition.update 2016-05-24 +save_atom_site_moment_fourier.wave_vector_seq_id -_description.text + _definition.id '_atom_site_moment_Fourier.wave_vector_seq_id' + _definition.update 2016-05-24 + _description.text ; - An arbitrary code that uniquely identifies the wave vector for - which magnetic Fourier modulation components are to be described - within the ATOM_SITE_MOMENT_FOURIER loop. It must match one of - the _atom_site_Fourier_wave_vector.seq_id values in the - ATOM_SITE_FOURIER_WAVE_VECTOR loop. + An arbitrary code that uniquely identifies the wave vector for + which magnetic Fourier modulation components are to be described + within the ATOM_SITE_MOMENT_FOURIER loop. It must match one of + the _atom_site_Fourier_wave_vector.seq_id values in the + ATOM_SITE_FOURIER_WAVE_VECTOR loop. - Analogous tags: - msCIF:_atom_site_displace_Fourier_wave_vector.seq_id, - msCIF:_atom_site_rot_Fourier_wave_vector.seq_id, - msCIF:_atom_site_occ_Fourier_wave_vector.seq_id, - msCIF:_atom_site_U_Fourier_wave_vector.seq_id + Analogous tags: + msCIF:_atom_site_displace_Fourier_wave_vector.seq_id, + msCIF:_atom_site_rot_Fourier_wave_vector.seq_id, + msCIF:_atom_site_occ_Fourier_wave_vector.seq_id, + msCIF:_atom_site_U_Fourier_wave_vector.seq_id ; -_type.contents Text -_type.container Single + _name.category_id atom_site_moment_Fourier + _name.object_id wave_vector_seq_id + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Text save_ +save_ATOM_SITE_MOMENT_FOURIER_PARAM -#################################### -## ATOM_SITE_MOMENT_FOURIER_PARAM ## -#################################### - -save_atom_site_moment_Fourier_param - -_definition.id atom_site_moment_Fourier_param -_name.category_id atom_site_moment_Fourier -_name.object_id atom_site_moment_Fourier_param -_definition.update 2016-05-24 -_description.text + _definition.id ATOM_SITE_MOMENT_FOURIER_PARAM + _definition.scope Category + _definition.class Loop + _definition.update 2016-05-24 + _description.text ; - Data items in this category record details about the - coefficients of the Fourier series used to describe the magnetic - modulation of an atom. This is a child category of the - ATOM_SITE_MOMENT_FOURIER category; so that magnetic Fourier - components can either be listed within the - ATOM_SITE_MOMENT_FOURIER loop, or else listed in a separate - loop. + Data items in this category record details about the + coefficients of the Fourier series used to describe the magnetic + modulation of an atom. This is a child category of the + ATOM_SITE_MOMENT_FOURIER category; so that magnetic Fourier + components can either be listed within the + ATOM_SITE_MOMENT_FOURIER loop, or else listed in a separate + loop. - Analogous tags: _atom_site_displace_Fourier_param.*, - _atom_site_rot_Fourier_param.*, - _atom_site_occ_Fourier_param.*, - _atom_site_U_Fourier_param.* + Analogous tags: _atom_site_displace_Fourier_param.*, + _atom_site_rot_Fourier_param.*, + _atom_site_occ_Fourier_param.*, + _atom_site_U_Fourier_param.* ; -_definition.scope Category -_definition.class Loop - -loop_ - _category_key.name - '_atom_site_moment_Fourier_param.id' -loop_ - _description_example.case - _description_example.detail -# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + _name.category_id ATOM_SITE_MOMENT_FOURIER + _name.object_id ATOM_SITE_MOMENT_FOURIER_PARAM + _category_key.name '_atom_site_moment_Fourier_param.id' + _description_example.case ; loop_ _cell_wave_vector_seq_id @@ -1260,1238 +1027,1403 @@ loop_ 8 Fe_1 3 y 0.42426 0.00000 0.50000*mxs 0 9 Fe_1 3 z 0.00000 0.00000 0 0 ; + _description_example.detail ; Example 1 - Hypothetical example showing the symmetry-restricted form of cosine and sine components of the modulation vector for a specific Wyckoff site. ; -# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -save_ - - -save__atom_site_moment_Fourier_param.cos - -_definition.id '_atom_site_moment_Fourier_param.cos' -_name.category_id atom_site_moment_Fourier_param -_name.object_id cos -loop_ - _alias.definition_id '_atom_site_moment_Fourier_param_cos' -_definition.update 2016-05-24 -_units.code Bohr_magnetons -_description.text -; - The cosine component of the magnetic Fourier modulation of a - specific atom, wave vector and coordinate axis. It is always - used together with the sine component, but not with the modulus - or phase components. - - Analogous tags: msCIF:_atom_site_displace_Fourier_param.cos, - msCIF:_atom_site_rot_Fourier_param.cos, - msCIF:_atom_site_occ_Fourier_param.cos, - msCIF:_atom_site_U_Fourier_param.cos - Also see the technical descriptions of the analogous tags. -; -_type.contents Real -_type.container Single -_type.purpose Measurand - -save_ - - -save__atom_site_moment_Fourier_param.cos_symmform - -_definition.id '_atom_site_moment_Fourier_param.cos_symmform' -_name.category_id atom_site_moment_Fourier_param -_name.object_id cos_symmform -loop_ - _alias.definition_id '_atom_site_moment_Fourier_param_cos_symmform' -_definition.update 2016-05-24 -_type.contents Text -_type.container Single -_description.text -; - A symbolic expression that indicates the symmetry-restricted form of - this modulation component for the affected Wyckoff site. The - expression can include a zero, a symbol, or a symbol - multiplied ('*') by a numerical prefactor. An allowed symbol is a - string that contains the following parts. (1) The 1st character - is "m" for magnetic. (2) The 2nd character is one of "x", "y", or - "z", to indicate the magnetic component to be modulated. (3) The - 3rd character is one of "m" for modulus, "p" for phase, "c" for - cosine, or "s" for sine. (4) The 4th character is an integer that - indicates the modulation vector. To use the same symbol with modulation - components belonging to symmetry related axes and/or wave vectors, - is to point out symmetry relationships amongst them. Obviously, - modulation components belonging to symmetry-distinct atoms, - axes, or wave vectors cannot be related by symmetry. - - Analogous tags: none, though analogous tags are needed for - displace, occ, U, and aniso waves. -; -loop_ - _description_example.case - -; -loop_ -_cell_wave_vector_seq_id -_cell_wave_vector_x -_cell_wave_vector_y -_cell_wave_vector_z - 1 0.30000 0.30000 0.00000 - 2 -0.60000 0.30000 0.00000 -loop_ -_atom_site_Fourier_wave_vector_seq_id -_atom_site_Fourier_wave_vector_x -_atom_site_Fourier_wave_vector_y -_atom_site_Fourier_wave_vector_z -_atom_site_Fourier_wave_vector_q1_coeff -_atom_site_Fourier_wave_vector_q2_coeff -1 -0.30000 0.60000 0.00000 1 1 -2 -0.60000 0.30000 0.00000 0 1 -3 -0.30000 -0.30000 0.00000 -1 0 -loop_ -_atom_site_moment_Fourier_id -_atom_site_moment_Fourier_atom_site_label -_atom_site_moment_Fourier_wave_vector_seq_id -_atom_site_moment_Fourier_axis -_atom_site_moment_Fourier_param.cos -_atom_site_moment_Fourier_param.sin -_atom_site_moment_Fourier_param.cos_symmform -_atom_site_moment_Fourier_param.sin_symmform -1 Fe_1 1 x 0.00000 0.84852 0 mxs1 -2 Fe_1 1 y 0.00000 0.42426 0 0.50000*mxs1 -3 Fe_1 1 z 0.00000 0.00000 0 0 -4 Fe_1 2 x 0.00000 -0.42426 0 -0.50000*mxs1 -5 Fe_1 2 y 0.00000 -0.84852 0 -mxs1 -6 Fe_1 2 z 0.00000 0.00000 0 0 -7 Fe_1 3 x -0.42426 0.00000 -0.50000*mxs1 0 -8 Fe_1 3 y 0.42426 0.00000 0.50000*mxs1 0 -9 Fe_1 3 z 0.00000 0.00000 0 0 -; - -save_ - - -save__atom_site_moment_Fourier_param.id - -_definition.id '_atom_site_moment_Fourier_param.id' -_name.category_id atom_site_moment_Fourier_param -_name.object_id id -loop_ - _alias.definition_id '_atom_site_moment_Fourier_param_id' -_definition.update 2016-05-24 - -_description.text -; - An arbitrary code that uniquely identifies each of the components - of each of the magnetic Fourier modulations of each of the atoms - in the structure. It will typically include an atom name, a - wave-vector id, and a coordinate axis. A sequence of positive - integers could also be used. This tag is only used when the - magnetic Fourier modulation components are split off into a - separate loop, which is less typical. When used, its value must - match one of the _atom_site_moment_Fourier.id values in the - ATOM_SITE_MOMENT_FOURIER loop. -; -_type.contents Text -_type.container Single -_type.purpose Link -_name.linked_item_id '_atom_site_moment_Fourier.id' - -save_ - - -save__atom_site_moment_Fourier_param.modulus - -_definition.id '_atom_site_moment_Fourier_param.modulus' -_name.category_id atom_site_moment_Fourier_param -_name.object_id modulus -loop_ - _alias.definition_id '_atom_site_moment_Fourier_param_modulus' -_definition.update 2016-05-24 -_units.code Bohr_magnetons -_description.text -; - The modulus component of the magnetic Fourier modulation of a - specific atom, wave vector and coordinate axis. It is always - used together with the phase component, but not with the cosine - or sine components. - - Analogous tags: msCIF:_atom_site_displace_Fourier_param.modulus, - msCIF:_atom_site_rot_Fourier_param.modulus, - msCIF:_atom_site_occ_Fourier_param.modulus, - msCIF:_atom_site_U_Fourier_param.modulus - Also see the technical descriptions of the analogous tags. -; -_type.contents Real -_type.container Single -_type.purpose Measurand save_ +save_atom_site_moment_fourier_param.cos -save__atom_site_moment_Fourier_param.modulus_symmform - -_definition.id '_atom_site_moment_Fourier_param.modulus_symmform' -_name.category_id atom_site_moment_Fourier_param -_name.object_id modulus_symmform -loop_ - _alias.definition_id '_atom_site_moment_Fourier_param_modulus_symmform' -_definition.update 2016-05-24 -_type.contents Text -_type.container Single -_description.text -; - See the description and example given for the - _atom_site_moment_Fourier_param.cos_symmform item. + _definition.id '_atom_site_moment_Fourier_param.cos' + _alias.definition_id '_atom_site_moment_Fourier_param_cos' + _definition.update 2016-05-24 + _description.text ; + The cosine component of the magnetic Fourier modulation of a + specific atom, wave vector and coordinate axis. It is always + used together with the sine component, but not with the modulus + or phase components. -save_ - - -save__atom_site_moment_Fourier_param.phase - -_definition.id '_atom_site_moment_Fourier_param.phase' -_name.category_id atom_site_moment_Fourier_param -_name.object_id phase -loop_ - _alias.definition_id '_atom_site_moment_Fourier_param_phase' -_definition.update 2016-05-24 -_enumeration.range -1.0:1.0 -_units.code cycles -_description.text + Analogous tags: msCIF:_atom_site_displace_Fourier_param.cos, + msCIF:_atom_site_rot_Fourier_param.cos, + msCIF:_atom_site_occ_Fourier_param.cos, + msCIF:_atom_site_U_Fourier_param.cos + Also see the technical descriptions of the analogous tags. ; - The phase component of the magnetic Fourier modulation of a - specific atom, wave vector and coordinate axis. It is always - used together with the modulus component, but not with the cosine - or sine components. This parameter will be unitless regardless of - the coordinate system used. - - Analogous tags: msCIF:_atom_site_displacive_Fourier_param.phase, - msCIF:_atom_site_rot_Fourier_param.phase, - msCIF:_atom_site_occ_Fourier_param.phase, - msCIF:_atom_site_U_Fourier_param.phase - Also see the technical descriptions of the analogous tags. -; -_type.contents Real -_type.container Single -_type.purpose Measurand + _name.category_id atom_site_moment_Fourier_param + _name.object_id cos + _type.purpose Measurand + _type.source Assigned + _type.container Single + _type.contents Real + _units.code Bohr_magnetons save_ +save_atom_site_moment_fourier_param.cos_symmform -save__atom_site_moment_Fourier_param.phase_symmform + _definition.id '_atom_site_moment_Fourier_param.cos_symmform' + _alias.definition_id '_atom_site_moment_Fourier_param_cos_symmform' + _definition.update 2016-05-24 + _description.text +; + A symbolic expression that indicates the symmetry-restricted form of + this modulation component for the affected Wyckoff site. The + expression can include a zero, a symbol, or a symbol + multiplied ('*') by a numerical prefactor. An allowed symbol is a + string that contains the following parts. (1) The 1st character + is "m" for magnetic. (2) The 2nd character is one of "x", "y", or + "z", to indicate the magnetic component to be modulated. (3) The + 3rd character is one of "m" for modulus, "p" for phase, "c" for + cosine, or "s" for sine. (4) The 4th character is an integer that + indicates the modulation vector. To use the same symbol with modulation + components belonging to symmetry related axes and/or wave vectors, + is to point out symmetry relationships amongst them. Obviously, + modulation components belonging to symmetry-distinct atoms, + axes, or wave vectors cannot be related by symmetry. -_definition.id '_atom_site_moment_Fourier_param.phase_symmform' -_name.category_id atom_site_moment_Fourier_param -_name.object_id phase_symmform -loop_ - _alias.definition_id '_atom_site_moment_Fourier_param_phase_symmform' -_definition.update 2016-05-24 -_type.contents Text -_type.container Single -_description.text + Analogous tags: none, though analogous tags are needed for + displace, occ, U, and aniso waves. ; - See the description and example given for the - _atom_site_moment_Fourier_param.cos_symmform item. + _name.category_id atom_site_moment_Fourier_param + _name.object_id cos_symmform + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Text + _description_example.case ; + loop_ + _cell_wave_vector_seq_id + _cell_wave_vector_x + _cell_wave_vector_y + _cell_wave_vector_z + 1 0.30000 0.30000 0.00000 + 2 -0.60000 0.30000 0.00000 + loop_ + _atom_site_Fourier_wave_vector_seq_id + _atom_site_Fourier_wave_vector_x + _atom_site_Fourier_wave_vector_y + _atom_site_Fourier_wave_vector_z + _atom_site_Fourier_wave_vector_q1_coeff + _atom_site_Fourier_wave_vector_q2_coeff + 1 -0.30000 0.60000 0.00000 1 1 + 2 -0.60000 0.30000 0.00000 0 1 + 3 -0.30000 -0.30000 0.00000 -1 0 + loop_ + _atom_site_moment_Fourier_id + _atom_site_moment_Fourier_atom_site_label + _atom_site_moment_Fourier_wave_vector_seq_id + _atom_site_moment_Fourier_axis + _atom_site_moment_Fourier_param.cos + _atom_site_moment_Fourier_param.sin + _atom_site_moment_Fourier_param.cos_symmform + _atom_site_moment_Fourier_param.sin_symmform + 1 Fe_1 1 x 0.00000 0.84852 0 mxs1 + 2 Fe_1 1 y 0.00000 0.42426 0 0.50000*mxs1 + 3 Fe_1 1 z 0.00000 0.00000 0 0 + 4 Fe_1 2 x 0.00000 -0.42426 0 -0.50000*mxs1 + 5 Fe_1 2 y 0.00000 -0.84852 0 -mxs1 + 6 Fe_1 2 z 0.00000 0.00000 0 0 + 7 Fe_1 3 x -0.42426 0.00000 -0.50000*mxs1 0 + 8 Fe_1 3 y 0.42426 0.00000 0.50000*mxs1 0 + 9 Fe_1 3 z 0.00000 0.00000 0 0 +; + +save_ + +save_atom_site_moment_fourier_param.id + + _definition.id '_atom_site_moment_Fourier_param.id' + _alias.definition_id '_atom_site_moment_Fourier_param_id' + _definition.update 2016-05-24 + _description.text +; + An arbitrary code that uniquely identifies each of the components + of each of the magnetic Fourier modulations of each of the atoms + in the structure. It will typically include an atom name, a + wave-vector id, and a coordinate axis. A sequence of positive + integers could also be used. This tag is only used when the + magnetic Fourier modulation components are split off into a + separate loop, which is less typical. When used, its value must + match one of the _atom_site_moment_Fourier.id values in the + ATOM_SITE_MOMENT_FOURIER loop. +; + _name.category_id atom_site_moment_Fourier_param + _name.object_id id + _name.linked_item_id '_atom_site_moment_Fourier.id' + _type.purpose Link + _type.source Assigned + _type.container Single + _type.contents Text + +save_ + +save_atom_site_moment_fourier_param.modulus -save_ - - -save__atom_site_moment_Fourier_param.sin - -_definition.id '_atom_site_moment_Fourier_param.sin' -_name.category_id atom_site_moment_Fourier_param -_name.object_id sin -loop_ - _alias.definition_id '_atom_site_moment_Fourier_param_sin' -_definition.update 2016-05-24 -_units.code Bohr_magnetons -_description.text + _definition.id '_atom_site_moment_Fourier_param.modulus' + _alias.definition_id '_atom_site_moment_Fourier_param_modulus' + _definition.update 2016-05-24 + _description.text ; - The sine component of the magnetic Fourier modulation of a - specific atom, wave vector and coordinate axis. It is always - used together with the cosine component, but not with the modulus - or phase components. + The modulus component of the magnetic Fourier modulation of a + specific atom, wave vector and coordinate axis. It is always + used together with the phase component, but not with the cosine + or sine components. + + Analogous tags: msCIF:_atom_site_displace_Fourier_param.modulus, + msCIF:_atom_site_rot_Fourier_param.modulus, + msCIF:_atom_site_occ_Fourier_param.modulus, + msCIF:_atom_site_U_Fourier_param.modulus + Also see the technical descriptions of the analogous tags. +; + _name.category_id atom_site_moment_Fourier_param + _name.object_id modulus + _type.purpose Measurand + _type.source Assigned + _type.container Single + _type.contents Real + _units.code Bohr_magnetons + +save_ + +save_atom_site_moment_fourier_param.modulus_symmform - Analogous tags: msCIF:_atom_site_displace_Fourier_param.sin, - msCIF:_atom_site_rot_Fourier_param.sin, - msCIF:_atom_site_occ_Fourier_param.sin, - msCIF:_atom_site_U_Fourier_param.sin - Also see the technical descriptions of the analogous tags. -; -_type.contents Real -_type.container Single -_type.purpose Measurand + _definition.id + '_atom_site_moment_Fourier_param.modulus_symmform' + _alias.definition_id + '_atom_site_moment_Fourier_param_modulus_symmform' + _definition.update 2016-05-24 + _description.text +; + See the description and example given for the + _atom_site_moment_Fourier_param.cos_symmform item. +; + _name.category_id atom_site_moment_Fourier_param + _name.object_id modulus_symmform + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Text save_ +save_atom_site_moment_fourier_param.phase -save__atom_site_moment_Fourier_param.sin_symmform - -_definition.id '_atom_site_moment_Fourier_param.sin_symmform' -_name.category_id atom_site_moment_Fourier_param -_name.object_id sin_symmform -loop_ - _alias.definition_id '_atom_site_moment_Fourier_param_sin_symmform' -_definition.update 2016-05-24 -_type.contents Text -_type.container Single - -_description.text -; - See the description and example given for the - _atom_site_moment_Fourier_param.cos_symmform item. + _definition.id '_atom_site_moment_Fourier_param.phase' + _alias.definition_id '_atom_site_moment_Fourier_param_phase' + _definition.update 2016-05-24 + _description.text ; + The phase component of the magnetic Fourier modulation of a + specific atom, wave vector and coordinate axis. It is always + used together with the modulus component, but not with the cosine + or sine components. This parameter will be unitless regardless of + the coordinate system used. -save_ - -################################### -## ATOM_SITE_MOMENT_SPECIAL_FUNC ## -################################### - -save_atom_site_moment_special_func - -_definition.id atom_site_moment_special_func -_name.category_id MAGNETIC -_name.object_id atom_site_moment_special_func -_definition.update 2016-05-24 -_description.text + Analogous tags: msCIF:_atom_site_displacive_Fourier_param.phase, + msCIF:_atom_site_rot_Fourier_param.phase, + msCIF:_atom_site_occ_Fourier_param.phase, + msCIF:_atom_site_U_Fourier_param.phase + Also see the technical descriptions of the analogous tags. ; - Data items in the ATOM_SITE_MOMENT_SPECIAL_FUNC category record - details about the magnetic modulation of an atom site in a - modulated structure when it is not described by Fourier series. - Special functions are effective in some cases where the - modulations are highly anharmonic, since the number of parameters - is drastically reduced. However, they are in general - discontinuous or with discontinuous derivatives and therefore - these functions describe an ideal situation that never occurs in - a real modulated crystal. Up to now, only a few types of special - functions have been used and all of them come from the JANA suite - of programs. Although this approach is far from being general, it - has the advantage that the functions are tightly defined and - therefore the relevant parameters can be calculated easily. In - this dictionary, only the special functions available in - JANA2000 have been included. These are: (1) Sawtooth functions - for atomic displacive modulation along x, y and z. (2) - Crenel functions for the occupational modulation of atoms - and rigid groups. Both of these only apply to - one-dimensional modulated structures. + _name.category_id atom_site_moment_Fourier_param + _name.object_id phase + _type.purpose Measurand + _type.source Assigned + _type.container Single + _type.contents Real + _enumeration.range -1.0:1.0 + _units.code cycles + +save_ + +save_atom_site_moment_fourier_param.phase_symmform + + _definition.id + '_atom_site_moment_Fourier_param.phase_symmform' + _alias.definition_id + '_atom_site_moment_Fourier_param_phase_symmform' + _definition.update 2016-05-24 + _description.text +; + See the description and example given for the + _atom_site_moment_Fourier_param.cos_symmform item. +; + _name.category_id atom_site_moment_Fourier_param + _name.object_id phase_symmform + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Text - Analogous tags: _atom_site_displace_special_func.*, - _atom_site_occ_special_func.* +save_ + +save_atom_site_moment_fourier_param.sin + + _definition.id '_atom_site_moment_Fourier_param.sin' + _alias.definition_id '_atom_site_moment_Fourier_param_sin' + _definition.update 2016-05-24 + _description.text +; + The sine component of the magnetic Fourier modulation of a + specific atom, wave vector and coordinate axis. It is always + used together with the cosine component, but not with the modulus + or phase components. + + Analogous tags: msCIF:_atom_site_displace_Fourier_param.sin, + msCIF:_atom_site_rot_Fourier_param.sin, + msCIF:_atom_site_occ_Fourier_param.sin, + msCIF:_atom_site_U_Fourier_param.sin + Also see the technical descriptions of the analogous tags. ; -_definition.scope Category -_definition.class Loop - -loop_ - _category_key.name - '_atom_site_moment_special_func.atom_site_label' + _name.category_id atom_site_moment_Fourier_param + _name.object_id sin + _type.purpose Measurand + _type.source Assigned + _type.container Single + _type.contents Real + _units.code Bohr_magnetons save_ - - -save__atom_site_moment_special_func.atom_site_label - -_definition.id '_atom_site_moment_special_func.atom_site_label' -_name.category_id atom_site_moment_special_func -_name.object_id atom_site_label -_import.get [{'save':atom_site_id 'file':templ_attr.cif}] + +save_atom_site_moment_fourier_param.sin_symmform + + _definition.id '_atom_site_moment_Fourier_param.sin_symmform' + _alias.definition_id '_atom_site_moment_Fourier_param_sin_symmform' + _definition.update 2016-05-24 + _description.text +; + See the description and example given for the + _atom_site_moment_Fourier_param.cos_symmform item. +; + _name.category_id atom_site_moment_Fourier_param + _name.object_id sin_symmform + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Text + save_ +save_ATOM_SITE_MOMENT_SPECIAL_FUNC + + _definition.id ATOM_SITE_MOMENT_SPECIAL_FUNC + _definition.scope Category + _definition.class Loop + _definition.update 2016-05-24 + _description.text +; + Data items in the ATOM_SITE_MOMENT_SPECIAL_FUNC category record + details about the magnetic modulation of an atom site in a + modulated structure when it is not described by Fourier series. + Special functions are effective in some cases where the + modulations are highly anharmonic, since the number of parameters + is drastically reduced. However, they are in general + discontinuous or with discontinuous derivatives and therefore + these functions describe an ideal situation that never occurs in + a real modulated crystal. Up to now, only a few types of special + functions have been used and all of them come from the JANA suite + of programs. Although this approach is far from being general, it + has the advantage that the functions are tightly defined and + therefore the relevant parameters can be calculated easily. In + this dictionary, only the special functions available in + JANA2000 have been included. These are: (1) Sawtooth functions + for atomic displacive modulation along x, y and z. (2) + Crenel functions for the occupational modulation of atoms + and rigid groups. Both of these only apply to + one-dimensional modulated structures. -save__atom_site_moment_special_func.sawtooth_ax - -_definition.id '_atom_site_moment_special_func.sawtooth_ax' -_name.category_id atom_site_moment_special_func -_name.object_id sawtooth_ax -loop_ - _alias.definition_id '_atom_site_moment_special_func_sawtooth_ax' -_definition.update 2016-05-24 -_type.contents Real -_type.container Single -_type.purpose Measurand - -_description.text -; - _atom_site_moment_special_func.sawtooth items are the - adjustable parameters of a magnetic sawtooth function. A - magnetic sawtooth function is only used when working in the - crystal-axis coordinate system. It is defined along the - internal space direction as follows: - mx=2*ax[(x4-c)/w] my=2*ay[(x4-c)/w] - mz=2*az[(x4-c)/w] - with x4 belonging to the interval [c-(w/2), c+(w/2)], where - ax, ay and az are the amplitudes (maximum magnetic moments) - along each crystallographic axis, w is its width, x4 is the - internal coordinate and c is the centre of the function in - internal space. The use of this function is restricted to - one-dimensional modulated structures. For more details, see - the manual for JANA2000 (Petricek & Dusek, 2000). - Calculated parameters mx, my and mz must be in Bohr-magneton - units and can vary in the range (-infinity,infinity). - - Ref: Petricek, V. & Dusek, M. (2000). JANA2000. - The crystallographic computing system. Institute of Physics, Prague, - Czech Republic. - - Analogous tags: _atom_site_displace_special_func.sawtooth_*, - _atom_site_occ_special_func.cresnel_* + Analogous tags: _atom_site_displace_special_func.*, + _atom_site_occ_special_func.* ; -_units.code Bohr_magnetons + _name.category_id MAGNETIC + _name.object_id ATOM_SITE_MOMENT_SPECIAL_FUNC + _category_key.name + '_atom_site_moment_special_func.atom_site_label' save_ +save_atom_site_moment_special_func.atom_site_label -save__atom_site_moment_special_func.sawtooth_ay - -_definition.id '_atom_site_moment_special_func.sawtooth_ay' -_name.category_id atom_site_moment_special_func -_name.object_id sawtooth_ay -loop_ - _alias.definition_id '_atom_site_moment_special_func_sawtooth_ay' -_definition.update 2016-05-24 -_type.contents Real -_type.container Single -_type.purpose Measurand - -_description.text -; - _atom_site_moment_special_func.sawtooth_ items are the - adjustable parameters of a magnetic sawtooth function. A - magnetic sawtooth function is only used when working in the - crystal-axis coordinate system. It is defined along the - internal space direction as follows: - mx=2*ax[(x4-c)/w] my=2*ay[(x4-c)/w] - mz=2*az[(x4-c)/w] - with x4 belonging to the interval [c-(w/2), c+(w/2)], where - ax, ay and az are the amplitudes (maximum magnetic moments) - along each crystallographic axis, w is its width, x4 is the - internal coordinate and c is the centre of the function in - internal space. The use of this function is restricted to - one-dimensional modulated structures. For more details, see - the manual for JANA2000 (Petricek & Dusek, 2000). - Calculated parameters mx, my and mz must be in Bohr-magneton - units and can vary in the range (-infinity,infinity). - - Ref: Petricek, V. & Dusek, M. (2000). JANA2000. - The crystallographic computing system. Institute of Physics, Prague, - Czech Republic. - - Analogous tags: _atom_site_displace_special_func.sawtooth_*, - _atom_site_occ_special_func.cresnel_* + _definition.id + '_atom_site_moment_special_func.atom_site_label' + _name.category_id atom_site_moment_special_func + _name.object_id atom_site_label + + _import.get [{'file':templ_attr.cif 'save':atom_site_id}] + +save_ + +save_atom_site_moment_special_func.sawtooth_ax + + _definition.id '_atom_site_moment_special_func.sawtooth_ax' + _alias.definition_id '_atom_site_moment_special_func_sawtooth_ax' + _definition.update 2016-05-24 + _description.text +; + _atom_site_moment_special_func.sawtooth items are the + adjustable parameters of a magnetic sawtooth function. A + magnetic sawtooth function is only used when working in the + crystal-axis coordinate system. It is defined along the + internal space direction as follows: + mx=2*ax[(x4-c)/w] my=2*ay[(x4-c)/w] + mz=2*az[(x4-c)/w] + with x4 belonging to the interval [c-(w/2), c+(w/2)], where + ax, ay and az are the amplitudes (maximum magnetic moments) + along each crystallographic axis, w is its width, x4 is the + internal coordinate and c is the centre of the function in + internal space. The use of this function is restricted to + one-dimensional modulated structures. For more details, see + the manual for JANA2000 (Petricek & Dusek, 2000). + Calculated parameters mx, my and mz must be in Bohr-magneton + units and can vary in the range (-infinity,infinity). + + Ref: Petricek, V. & Dusek, M. (2000). JANA2000. + The crystallographic computing system. Institute of Physics, Prague, + Czech Republic. + + Analogous tags: _atom_site_displace_special_func.sawtooth_*, + _atom_site_occ_special_func.cresnel_* +; + _name.category_id atom_site_moment_special_func + _name.object_id sawtooth_ax + _type.purpose Measurand + _type.source Assigned + _type.container Single + _type.contents Real + _units.code Bohr_magnetons + +save_ + +save_atom_site_moment_special_func.sawtooth_ay + + _definition.id '_atom_site_moment_special_func.sawtooth_ay' + _alias.definition_id '_atom_site_moment_special_func_sawtooth_ay' + _definition.update 2016-05-24 + _description.text +; + _atom_site_moment_special_func.sawtooth_ items are the + adjustable parameters of a magnetic sawtooth function. A + magnetic sawtooth function is only used when working in the + crystal-axis coordinate system. It is defined along the + internal space direction as follows: + mx=2*ax[(x4-c)/w] my=2*ay[(x4-c)/w] + mz=2*az[(x4-c)/w] + with x4 belonging to the interval [c-(w/2), c+(w/2)], where + ax, ay and az are the amplitudes (maximum magnetic moments) + along each crystallographic axis, w is its width, x4 is the + internal coordinate and c is the centre of the function in + internal space. The use of this function is restricted to + one-dimensional modulated structures. For more details, see + the manual for JANA2000 (Petricek & Dusek, 2000). + Calculated parameters mx, my and mz must be in Bohr-magneton + units and can vary in the range (-infinity,infinity). + + Ref: Petricek, V. & Dusek, M. (2000). JANA2000. + The crystallographic computing system. Institute of Physics, Prague, + Czech Republic. + + Analogous tags: _atom_site_displace_special_func.sawtooth_*, + _atom_site_occ_special_func.cresnel_* +; + _name.category_id atom_site_moment_special_func + _name.object_id sawtooth_ay + _type.purpose Measurand + _type.source Assigned + _type.container Single + _type.contents Real + _units.code Bohr_magnetons + +save_ + +save_atom_site_moment_special_func.sawtooth_az + + _definition.id '_atom_site_moment_special_func.sawtooth_az' + _alias.definition_id '_atom_site_moment_special_func_sawtooth_az' + _definition.update 2016-05-24 + _description.text +; + _atom_site_moment_special_func.sawtooth_ items are the + adjustable parameters of a magnetic sawtooth function. A + magnetic sawtooth function is only used when working in the + crystal-axis coordinate system. It is defined along the + internal space direction as follows: + mx=2*ax[(x4-c)/w] my=2*ay[(x4-c)/w] + mz=2*az[(x4-c)/w] + with x4 belonging to the interval [c-(w/2), c+(w/2)], where + ax, ay and az are the amplitudes (maximum magnetic moments) + along each crystallographic axis, w is its width, x4 is the + internal coordinate and c is the centre of the function in + internal space. The use of this function is restricted to + one-dimensional modulated structures. For more details, see + the manual for JANA2000 (Petricek & Dusek, 2000). + Calculated parameters mx, my and mz must be in Bohr-magneton + units and can vary in the range (-infinity,infinity). + + Ref: Petricek, V. & Dusek, M. (2000). JANA2000. + The crystallographic computing system. Institute of Physics, Prague, + Czech Republic. + + Analogous tags: _atom_site_displace_special_func.sawtooth_*, + _atom_site_occ_special_func.cresnel_* +; + _name.category_id atom_site_moment_special_func + _name.object_id sawtooth_az + _type.purpose Measurand + _type.source Assigned + _type.container Single + _type.contents Real + _units.code Bohr_magnetons + +save_ + +save_atom_site_moment_special_func.sawtooth_c + + _definition.id '_atom_site_moment_special_func.sawtooth_c' + _alias.definition_id '_atom_site_moment_special_func_sawtooth_c' + _definition.update 2016-05-24 + _description.text +; + _atom_site_moment_special_func.sawtooth_ items are the + adjustable parameters of a magnetic sawtooth function. A + magnetic sawtooth function is only used when working in the + crystal-axis coordinate system. It is defined along the + internal space direction as follows: + mx=2*ax[(x4-c)/w] my=2*ay[(x4-c)/w] + mz=2*az[(x4-c)/w] + with x4 belonging to the interval [c-(w/2), c+(w/2)], where + ax, ay and az are the amplitudes (maximum magnetic moments) + along each crystallographic axis, w is its width, x4 is the + internal coordinate and c is the centre of the function in + internal space. The use of this function is restricted to + one-dimensional modulated structures. For more details, see + the manual for JANA2000 (Petricek & Dusek, 2000). + Calculated parameters mx, my and mz must be in Bohr-magneton + units and can vary in the range (-infinity,infinity). + + Ref: Petricek, V. & Dusek, M. (2000). JANA2000. + The crystallographic computing system. Institute of Physics, Prague, + Czech Republic. + + Analogous tags: _atom_site_displace_special_func.sawtooth_*, + _atom_site_occ_special_func.cresnel_* +; + _name.category_id atom_site_moment_special_func + _name.object_id sawtooth_c + _type.purpose Measurand + _type.source Assigned + _type.container Single + _type.contents Real + _units.code Bohr_magnetons + +save_ + +save_atom_site_moment_special_func.sawtooth_w + + _definition.id '_atom_site_moment_special_func.sawtooth_w' + _alias.definition_id '_atom_site_moment_special_func_sawtooth_w' + _definition.update 2016-05-24 + _description.text +; + _atom_site_moment_special_func.sawtooth_ items are the + adjustable parameters of a magnetic sawtooth function. A + magnetic sawtooth function is only used when working in the + crystal-axis coordinate system. It is defined along the + internal space direction as follows: + mx=2*ax[(x4-c)/w] my=2*ay[(x4-c)/w] + mz=2*az[(x4-c)/w] + with x4 belonging to the interval [c-(w/2), c+(w/2)], where + ax, ay and az are the amplitudes (maximum magnetic moments) + along each crystallographic axis, w is its width, x4 is the + internal coordinate and c is the centre of the function in + internal space. The use of this function is restricted to + one-dimensional modulated structures. For more details, see + the manual for JANA2000 (Petricek & Dusek, 2000). + Calculated parameters mx, my and mz must be in Bohr-magneton + units and can vary in the range (-infinity,infinity). + + Ref: Petricek, V. & Dusek, M. (2000). JANA2000. + The crystallographic computing system. Institute of Physics, Prague, + Czech Republic. + + Analogous tags: _atom_site_displace_special_func.sawtooth_*, + _atom_site_occ_special_func.cresnel_* +; + _name.category_id atom_site_moment_special_func + _name.object_id sawtooth_w + _type.purpose Measurand + _type.source Assigned + _type.container Single + _type.contents Real + _units.code Bohr_magnetons + +save_ + +save_ATOM_SITES_MOMENT_FOURIER + + _definition.id ATOM_SITES_MOMENT_FOURIER + _definition.scope Category + _definition.class Set + _definition.update 2016-05-24 + _description.text +; + Data items in the ATOM_SITES_MOMENT_FOURIER category record + details common to the magnetic modulations of atom sites in a + modulated structure. + Details for individual atom sites are described by data items in + the ATOM_SITE_MOMENT_FOURIER category. + + Analogous tags: _atom_sites_displace_Fourier.*, + _atom_sites_rot_Fourier.*, _atom_sites_occ_Fourier.*, + _atom_sites_U_Fourier.* +; + _name.category_id MAGNETIC + _name.object_id ATOM_SITES_MOMENT_FOURIER + +save_ + +save_atom_sites_moment_fourier.axes_description + + _definition.id '_atom_sites_moment_Fourier.axes_description' + _definition.update 2016-05-24 + _description.text +; + Describes a user-defined coordinate system for which magnetic + Fourier modulation components are to be presented. Only used + when different from those described by + _atom_site_moment_Fourier.axis. + + Analogous tags: + msCIF:_atom_sites_displace_Fourier.axes_description + + It is not difficult to imagine an + _atom_sites_rot_Fourier.axes_description tag. ; -_units.code Bohr_magnetons - -save_ - - -save__atom_site_moment_special_func.sawtooth_az - -_definition.id '_atom_site_moment_special_func.sawtooth_az' -_name.category_id atom_site_moment_special_func -_name.object_id sawtooth_az -loop_ - _alias.definition_id '_atom_site_moment_special_func_sawtooth_az' -_definition.update 2016-05-24 -_type.contents Real -_type.container Single -_type.purpose Measurand - -_description.text -; - _atom_site_moment_special_func.sawtooth_ items are the - adjustable parameters of a magnetic sawtooth function. A - magnetic sawtooth function is only used when working in the - crystal-axis coordinate system. It is defined along the - internal space direction as follows: - mx=2*ax[(x4-c)/w] my=2*ay[(x4-c)/w] - mz=2*az[(x4-c)/w] - with x4 belonging to the interval [c-(w/2), c+(w/2)], where - ax, ay and az are the amplitudes (maximum magnetic moments) - along each crystallographic axis, w is its width, x4 is the - internal coordinate and c is the centre of the function in - internal space. The use of this function is restricted to - one-dimensional modulated structures. For more details, see - the manual for JANA2000 (Petricek & Dusek, 2000). - Calculated parameters mx, my and mz must be in Bohr-magneton - units and can vary in the range (-infinity,infinity). - - Ref: Petricek, V. & Dusek, M. (2000). JANA2000. - The crystallographic computing system. Institute of Physics, Prague, - Czech Republic. - - Analogous tags: _atom_site_displace_special_func.sawtooth_*, - _atom_site_occ_special_func.cresnel_* -; -_units.code Bohr_magnetons - -save_ - - -save__atom_site_moment_special_func.sawtooth_c - -_definition.id '_atom_site_moment_special_func.sawtooth_c' -_name.category_id atom_site_moment_special_func -_name.object_id sawtooth_c -loop_ - _alias.definition_id '_atom_site_moment_special_func_sawtooth_c' -_definition.update 2016-05-24 -_type.contents Real -_type.container Single -_type.purpose Measurand - -_description.text -; - _atom_site_moment_special_func.sawtooth_ items are the - adjustable parameters of a magnetic sawtooth function. A - magnetic sawtooth function is only used when working in the - crystal-axis coordinate system. It is defined along the - internal space direction as follows: - mx=2*ax[(x4-c)/w] my=2*ay[(x4-c)/w] - mz=2*az[(x4-c)/w] - with x4 belonging to the interval [c-(w/2), c+(w/2)], where - ax, ay and az are the amplitudes (maximum magnetic moments) - along each crystallographic axis, w is its width, x4 is the - internal coordinate and c is the centre of the function in - internal space. The use of this function is restricted to - one-dimensional modulated structures. For more details, see - the manual for JANA2000 (Petricek & Dusek, 2000). - Calculated parameters mx, my and mz must be in Bohr-magneton - units and can vary in the range (-infinity,infinity). - - Ref: Petricek, V. & Dusek, M. (2000). JANA2000. - The crystallographic computing system. Institute of Physics, Prague, - Czech Republic. - - Analogous tags: _atom_site_displace_special_func.sawtooth_*, - _atom_site_occ_special_func.cresnel_* + _name.category_id atom_sites_moment_Fourier + _name.object_id axes_description + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Text + _description_example.case +; + a1 and a2 are respectively the long + molecular axis and the axis normal to + the mean molecular plane. + Extracted from Baudour & Sanquer + [Acta Cryst. (1983), B39, 75-84]. ; -_units.code Bohr_magnetons save_ +save_atom_type_scat.neutron_magnetic_j0_a1 -save__atom_site_moment_special_func.sawtooth_w - -_definition.id '_atom_site_moment_special_func.sawtooth_w' -_name.category_id atom_site_moment_special_func -_name.object_id sawtooth_w -loop_ - _alias.definition_id '_atom_site_moment_special_func_sawtooth_w' -_definition.update 2016-05-24 -_type.contents Real -_type.container Single -_type.purpose Measurand - -_description.text + _definition.id '_atom_type_scat.neutron_magnetic_j0_A1' + _definition.update 2016-05-24 + _description.text ; - _atom_site_moment_special_func.sawtooth_ items are the - adjustable parameters of a magnetic sawtooth function. A - magnetic sawtooth function is only used when working in the - crystal-axis coordinate system. It is defined along the - internal space direction as follows: - mx=2*ax[(x4-c)/w] my=2*ay[(x4-c)/w] - mz=2*az[(x4-c)/w] - with x4 belonging to the interval [c-(w/2), c+(w/2)], where - ax, ay and az are the amplitudes (maximum magnetic moments) - along each crystallographic axis, w is its width, x4 is the - internal coordinate and c is the centre of the function in - internal space. The use of this function is restricted to - one-dimensional modulated structures. For more details, see - the manual for JANA2000 (Petricek & Dusek, 2000). - Calculated parameters mx, my and mz must be in Bohr-magneton - units and can vary in the range (-infinity,infinity). + First, the parameters are used directly to approximate spatial + averages of spherical Bessel functions over the electronic wave + functions of unpaired electrons of the given atom type as a + function of s = sin(theta)/lambda. + = [A1*e^(-a2*s^2) + B1*e^(-b2*s^2) + C1*e^(-c2*s^2) + + D]*[1 if n=0, s^2 if n=2,4,6] + The are then combined to determine the spin and orbital + contributions to the magnetic form factor of the atom. The "e" + parameter is a measure of error in the approximation. - Ref: Petricek, V. & Dusek, M. (2000). JANA2000. - The crystallographic computing system. Institute of Physics, Prague, - Czech Republic. + Analogous tags: coreCIF:_atom_site.scat_Cromer_Mann_* - Analogous tags: _atom_site_displace_special_func.sawtooth_*, - _atom_site_occ_special_func.cresnel_* + Ref: International Tables for Crystallography (2006). Vol. + C, Sections 4.4.5 and 6.1.2.3 (and references therein). ; -_units.code Bohr_magnetons + _name.category_id atom_type_scat + _name.object_id neutron_magnetic_j0_A1 + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Real save_ +save_atom_type_scat.neutron_magnetic_j0_a2 -############################### -## ATOM_SITES_MOMENT_FOURIER ## -############################### - -save_atom_sites_moment_Fourier - -_definition.id atom_sites_moment_Fourier -_name.category_id MAGNETIC -_name.object_id atom_sites_moment_Fourier -_definition.update 2016-05-24 -_description.text + _definition.id '_atom_type_scat.neutron_magnetic_j0_a2' + _definition.update 2016-05-24 + _description.text ; - Data items in the ATOM_SITES_MOMENT_FOURIER category record - details common to the magnetic modulations of atom sites in a - modulated structure. - Details for individual atom sites are described by data items in - the ATOM_SITE_MOMENT_FOURIER category. - - Analogous tags: _atom_sites_displace_Fourier.*, - _atom_sites_rot_Fourier.*, _atom_sites_occ_Fourier.*, - _atom_sites_U_Fourier.* + See definition for _atom_type_scat.neutron_magnetic_j0_A1 ; -_definition.scope Category -_definition.class Set -save_ - + _name.category_id atom_type_scat + _name.object_id neutron_magnetic_j0_a2 + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Real + _units.code angstrom_squared -save__atom_sites_moment_Fourier.axes_description +save_ -_definition.id '_atom_sites_moment_Fourier.axes_description' -_name.category_id atom_sites_moment_Fourier -_name.object_id axes_description -_definition.update 2016-05-24 +save_atom_type_scat.neutron_magnetic_j0_b1 -_description.text + _definition.id '_atom_type_scat.neutron_magnetic_j0_B1' + _definition.update 2016-05-24 + _description.text ; - Describes a user-defined coordinate system for which magnetic - Fourier modulation components are to be presented. Only used - when different from those described by - _atom_site_moment_Fourier.axis. - - Analogous tags: - msCIF:_atom_sites_displace_Fourier.axes_description - - It is not difficult to imagine an - _atom_sites_rot_Fourier.axes_description tag. + See definition for _atom_type_scat.neutron_magnetic_j0_A1 ; -_type.contents Text -_type.container Single - -loop_ - _description_example.case - -; a1 and a2 are respectively the long - molecular axis and the axis normal to - the mean molecular plane. - Extracted from Baudour & Sanquer - [Acta Cryst. (1983), B39, 75-84]. -; + _name.category_id atom_type_scat + _name.object_id neutron_magnetic_j0_B1 + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Real save_ +save_atom_type_scat.neutron_magnetic_j0_b2 - -#################### -## ATOM_TYPE_SCAT ## -#################### - -save__atom_type_scat.neutron_magnetic_j0_A1 - -_definition.id '_atom_type_scat.neutron_magnetic_j0_A1' -_name.category_id atom_type_scat -_name.object_id neutron_magnetic_j0_A1 -_definition.update 2016-05-24 -_type.contents Real -_type.container Single -_description.text + _definition.id '_atom_type_scat.neutron_magnetic_j0_b2' + _definition.update 2016-05-24 + _description.text ; - First, the parameters are used directly to approximate spatial - averages of spherical Bessel functions over the electronic wave - functions of unpaired electrons of the given atom type as a - function of s = sin(theta)/lambda. - = [A1*e^(-a2*s^2) + B1*e^(-b2*s^2) + C1*e^(-c2*s^2) + - D]*[1 if n=0, s^2 if n=2,4,6] - The are then combined to determine the spin and orbital - contributions to the magnetic form factor of the atom. The "e" - parameter is a measure of error in the approximation. - - Analogous tags: coreCIF:_atom_site.scat_Cromer_Mann_* - - Ref: International Tables for Crystallography (2006). Vol. - C, Sections 4.4.5 and 6.1.2.3 (and references therein). + See definition for _atom_type_scat.neutron_magnetic_j0_A1 ; + _name.category_id atom_type_scat + _name.object_id neutron_magnetic_j0_b2 + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Real + _units.code angstrom_squared save_ +save_atom_type_scat.neutron_magnetic_j0_c1 -save__atom_type_scat.neutron_magnetic_j0_a2 - -_definition.id '_atom_type_scat.neutron_magnetic_j0_a2' -_name.category_id atom_type_scat -_name.object_id neutron_magnetic_j0_a2 -_definition.update 2016-05-24 -_type.contents Real -_type.container Single -_description.text + _definition.id '_atom_type_scat.neutron_magnetic_j0_C1' + _definition.update 2016-05-24 + _description.text ; - See definition for _atom_type_scat.neutron_magnetic_j0_A1 - + See definition for _atom_type_scat.neutron_magnetic_j0_A1 ; -_units.code 'angstrom_squared' + _name.category_id atom_type_scat + _name.object_id neutron_magnetic_j0_C1 + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Real save_ +save_atom_type_scat.neutron_magnetic_j0_c2 -save__atom_type_scat.neutron_magnetic_j0_B1 - -_definition.id '_atom_type_scat.neutron_magnetic_j0_B1' -_name.category_id atom_type_scat -_name.object_id neutron_magnetic_j0_B1 -_definition.update 2016-05-24 -_type.contents Real -_type.container Single -_description.text + _definition.id '_atom_type_scat.neutron_magnetic_j0_c2' + _definition.update 2016-05-24 + _description.text ; - See definition for _atom_type_scat.neutron_magnetic_j0_A1 + See definition for _atom_type_scat.neutron_magnetic_j0_A1 ; + _name.category_id atom_type_scat + _name.object_id neutron_magnetic_j0_c2 + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Real + _units.code angstrom_squared save_ +save_atom_type_scat.neutron_magnetic_j0_d -save__atom_type_scat.neutron_magnetic_j0_b2 - -_definition.id '_atom_type_scat.neutron_magnetic_j0_b2' -_name.category_id atom_type_scat -_name.object_id neutron_magnetic_j0_b2 -_definition.update 2016-05-24 -_type.contents Real -_type.container Single -_description.text + _definition.id '_atom_type_scat.neutron_magnetic_j0_D' + _definition.update 2016-05-24 + _description.text ; - See definition for _atom_type_scat.neutron_magnetic_j0_A1 + See definition for _atom_type_scat.neutron_magnetic_j0_A1 ; -_units.code 'angstrom_squared' + _name.category_id atom_type_scat + _name.object_id neutron_magnetic_j0_D + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Real save_ +save_atom_type_scat.neutron_magnetic_j0_e -save__atom_type_scat.neutron_magnetic_j0_C1 - -_definition.id '_atom_type_scat.neutron_magnetic_j0_C1' -_name.category_id atom_type_scat -_name.object_id neutron_magnetic_j0_C1 -_definition.update 2016-05-24 -_type.contents Real -_type.container Single -_description.text + _definition.id '_atom_type_scat.neutron_magnetic_j0_e' + _definition.update 2016-05-24 + _description.text ; - See definition for _atom_type_scat.neutron_magnetic_j0_A1 - + See definition for _atom_type_scat.neutron_magnetic_j0_A1 ; + _name.category_id atom_type_scat + _name.object_id neutron_magnetic_j0_e + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Real save_ +save_atom_type_scat.neutron_magnetic_j2_a1 -save__atom_type_scat.neutron_magnetic_j0_c2 - -_definition.id '_atom_type_scat.neutron_magnetic_j0_c2' -_name.category_id atom_type_scat -_name.object_id neutron_magnetic_j0_c2 -_definition.update 2016-05-24 -_type.contents Real -_type.container Single -_description.text + _definition.id '_atom_type_scat.neutron_magnetic_j2_A1' + _definition.update 2016-05-24 + _description.text ; - See definition for _atom_type_scat.neutron_magnetic_j0_A1 - + See definition for _atom_type_scat.neutron_magnetic_j0_A1 ; -_units.code 'angstrom_squared' + _name.category_id atom_type_scat + _name.object_id neutron_magnetic_j2_A1 + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Real save_ +save_atom_type_scat.neutron_magnetic_j2_a2 -save__atom_type_scat.neutron_magnetic_j0_D - -_definition.id '_atom_type_scat.neutron_magnetic_j0_D' -_name.category_id atom_type_scat -_name.object_id neutron_magnetic_j0_D -_definition.update 2016-05-24 -_type.contents Real -_type.container Single -_description.text + _definition.id '_atom_type_scat.neutron_magnetic_j2_a2' + _definition.update 2016-05-24 + _description.text ; - See definition for _atom_type_scat.neutron_magnetic_j0_A1 + See definition for _atom_type_scat.neutron_magnetic_j0_A1 ; + _name.category_id atom_type_scat + _name.object_id neutron_magnetic_j2_a2 + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Real + _units.code angstrom_squared save_ +save_atom_type_scat.neutron_magnetic_j2_b1 -save__atom_type_scat.neutron_magnetic_j0_e - -_definition.id '_atom_type_scat.neutron_magnetic_j0_e' -_name.category_id atom_type_scat -_name.object_id neutron_magnetic_j0_e -_definition.update 2016-05-24 -_type.contents Real -_type.container Single -_description.text + _definition.id '_atom_type_scat.neutron_magnetic_j2_B1' + _definition.update 2016-05-24 + _description.text ; - See definition for _atom_type_scat.neutron_magnetic_j0_A1 - + See definition for _atom_type_scat.neutron_magnetic_j0_A1 ; + _name.category_id atom_type_scat + _name.object_id neutron_magnetic_j2_B1 + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Real save_ +save_atom_type_scat.neutron_magnetic_j2_b2 -save__atom_type_scat.neutron_magnetic_j2_A1 - -_definition.id '_atom_type_scat.neutron_magnetic_j2_A1' -_name.category_id atom_type_scat -_name.object_id neutron_magnetic_j2_A1 -_definition.update 2016-05-24 -_type.contents Real -_type.container Single -_description.text + _definition.id '_atom_type_scat.neutron_magnetic_j2_b2' + _definition.update 2016-05-24 + _description.text ; - See definition for _atom_type_scat.neutron_magnetic_j0_A1 + See definition for _atom_type_scat.neutron_magnetic_j0_A1 ; + _name.category_id atom_type_scat + _name.object_id neutron_magnetic_j2_b2 + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Real + _units.code angstrom_squared save_ +save_atom_type_scat.neutron_magnetic_j2_c1 -save__atom_type_scat.neutron_magnetic_j2_a2 - -_definition.id '_atom_type_scat.neutron_magnetic_j2_a2' -_name.category_id atom_type_scat -_name.object_id neutron_magnetic_j2_a2 -_definition.update 2016-05-24 -_type.contents Real -_type.container Single -_description.text + _definition.id '_atom_type_scat.neutron_magnetic_j2_C1' + _definition.update 2016-05-24 + _description.text ; - See definition for _atom_type_scat.neutron_magnetic_j0_A1 - + See definition for _atom_type_scat.neutron_magnetic_j0_A1 ; -_units.code 'angstrom_squared' + _name.category_id atom_type_scat + _name.object_id neutron_magnetic_j2_C1 + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Real save_ +save_atom_type_scat.neutron_magnetic_j2_c2 -save__atom_type_scat.neutron_magnetic_j2_B1 - -_definition.id '_atom_type_scat.neutron_magnetic_j2_B1' -_name.category_id atom_type_scat -_name.object_id neutron_magnetic_j2_B1 -_definition.update 2016-05-24 -_type.container Single -_type.contents Real -_description.text + _definition.id '_atom_type_scat.neutron_magnetic_j2_c2' + _definition.update 2016-05-24 + _description.text ; - See definition for _atom_type_scat.neutron_magnetic_j0_A1 - + See definition for _atom_type_scat.neutron_magnetic_j0_A1 ; + _name.category_id atom_type_scat + _name.object_id neutron_magnetic_j2_c2 + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Real + _units.code angstrom_squared save_ +save_atom_type_scat.neutron_magnetic_j2_d -save__atom_type_scat.neutron_magnetic_j2_b2 - -_definition.id '_atom_type_scat.neutron_magnetic_j2_b2' -_name.category_id atom_type_scat -_name.object_id neutron_magnetic_j2_b2 -_definition.update 2016-05-24 -_type.contents Real -_type.container Single -_description.text + _definition.id '_atom_type_scat.neutron_magnetic_j2_D' + _definition.update 2016-05-24 + _description.text ; - See definition for _atom_type_scat.neutron_magnetic_j0_A1 - + See definition for _atom_type_scat.neutron_magnetic_j0_A1 ; -_units.code 'angstrom_squared' + _name.category_id atom_type_scat + _name.object_id neutron_magnetic_j2_D + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Real save_ +save_atom_type_scat.neutron_magnetic_j2_e -save__atom_type_scat.neutron_magnetic_j2_C1 - -_definition.id '_atom_type_scat.neutron_magnetic_j2_C1' -_name.category_id atom_type_scat -_name.object_id neutron_magnetic_j2_C1 -_definition.update 2016-05-24 -_type.contents Real -_type.container Single -_description.text + _definition.id '_atom_type_scat.neutron_magnetic_j2_e' + _definition.update 2016-05-24 + _description.text ; - See definition for _atom_type_scat.neutron_magnetic_j0_A1 - + See definition for _atom_type_scat.neutron_magnetic_j0_A1 ; + _name.category_id atom_type_scat + _name.object_id neutron_magnetic_j2_e + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Real save_ +save_atom_type_scat.neutron_magnetic_j4_a1 -save__atom_type_scat.neutron_magnetic_j2_c2 - -_definition.id '_atom_type_scat.neutron_magnetic_j2_c2' -_name.category_id atom_type_scat -_name.object_id neutron_magnetic_j2_c2 -_definition.update 2016-05-24 -_type.contents Real -_type.container Single -_description.text + _definition.id '_atom_type_scat.neutron_magnetic_j4_A1' + _definition.update 2016-05-24 + _description.text ; - See definition for _atom_type_scat.neutron_magnetic_j0_A1 - + See definition for _atom_type_scat.neutron_magnetic_j0_A1 ; -_units.code 'angstrom_squared' + _name.category_id atom_type_scat + _name.object_id neutron_magnetic_j4_A1 + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Real save_ +save_atom_type_scat.neutron_magnetic_j4_a2 -save__atom_type_scat.neutron_magnetic_j2_D - -_definition.id '_atom_type_scat.neutron_magnetic_j2_D' -_name.category_id atom_type_scat -_name.object_id neutron_magnetic_j2_D -_definition.update 2016-05-24 -_type.contents Real -_type.container Single -_description.text + _definition.id '_atom_type_scat.neutron_magnetic_j4_a2' + _definition.update 2016-05-24 + _description.text ; - See definition for _atom_type_scat.neutron_magnetic_j0_A1 + See definition for _atom_type_scat.neutron_magnetic_j0_A1 ; + _name.category_id atom_type_scat + _name.object_id neutron_magnetic_j4_a2 + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Real + _units.code angstrom_squared save_ +save_atom_type_scat.neutron_magnetic_j4_b1 -save__atom_type_scat.neutron_magnetic_j2_e - -_definition.id '_atom_type_scat.neutron_magnetic_j2_e' -_name.category_id atom_type_scat -_name.object_id neutron_magnetic_j2_e -_definition.update 2016-05-24 -_type.contents Real -_type.container Single -_description.text + _definition.id '_atom_type_scat.neutron_magnetic_j4_B1' + _definition.update 2016-05-24 + _description.text ; - See definition for _atom_type_scat.neutron_magnetic_j0_A1 + See definition for _atom_type_scat.neutron_magnetic_j0_A1 ; + _name.category_id atom_type_scat + _name.object_id neutron_magnetic_j4_B1 + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Real save_ +save_atom_type_scat.neutron_magnetic_j4_b2 -save__atom_type_scat.neutron_magnetic_j4_A1 - -_definition.id '_atom_type_scat.neutron_magnetic_j4_A1' -_name.category_id atom_type_scat -_name.object_id neutron_magnetic_j4_A1 -_definition.update 2016-05-24 -_type.contents Real -_type.container Single -_description.text + _definition.id '_atom_type_scat.neutron_magnetic_j4_b2' + _definition.update 2016-05-24 + _description.text ; - See definition for _atom_type_scat.neutron_magnetic_j0_A1 - + See definition for _atom_type_scat.neutron_magnetic_j0_A1 ; + _name.category_id atom_type_scat + _name.object_id neutron_magnetic_j4_b2 + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Real + _units.code angstrom_squared save_ +save_atom_type_scat.neutron_magnetic_j4_c1 -save__atom_type_scat.neutron_magnetic_j4_a2 - -_definition.id '_atom_type_scat.neutron_magnetic_j4_a2' -_name.category_id atom_type_scat -_name.object_id neutron_magnetic_j4_a2 -_definition.update 2016-05-24 -_type.contents Real -_type.container Single -_description.text + _definition.id '_atom_type_scat.neutron_magnetic_j4_C1' + _definition.update 2016-05-24 + _description.text ; - See definition for _atom_type_scat.neutron_magnetic_j0_A1 - + See definition for _atom_type_scat.neutron_magnetic_j0_A1 ; -_units.code 'angstrom_squared' + _name.category_id atom_type_scat + _name.object_id neutron_magnetic_j4_C1 + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Real save_ +save_atom_type_scat.neutron_magnetic_j4_c2 -save__atom_type_scat.neutron_magnetic_j4_B1 - -_definition.id '_atom_type_scat.neutron_magnetic_j4_B1' -_name.category_id atom_type_scat -_name.object_id neutron_magnetic_j4_B1 -_definition.update 2016-05-24 -_type.contents Real -_type.container Single -_description.text + _definition.id '_atom_type_scat.neutron_magnetic_j4_c2' + _definition.update 2016-05-24 + _description.text ; - See definition for _atom_type_scat.neutron_magnetic_j0_A1 + See definition for _atom_type_scat.neutron_magnetic_j0_A1 ; + _name.category_id atom_type_scat + _name.object_id neutron_magnetic_j4_c2 + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Real + _units.code angstrom_squared save_ +save_atom_type_scat.neutron_magnetic_j4_d -save__atom_type_scat.neutron_magnetic_j4_b2 - -_definition.id '_atom_type_scat.neutron_magnetic_j4_b2' -_name.category_id atom_type_scat -_name.object_id neutron_magnetic_j4_b2 -_definition.update 2016-05-24 -_type.contents Real -_type.container Single -_description.text + _definition.id '_atom_type_scat.neutron_magnetic_j4_D' + _definition.update 2016-05-24 + _description.text ; - See definition for _atom_type_scat.neutron_magnetic_j0_A1 - + See definition for _atom_type_scat.neutron_magnetic_j0_A1 ; -_units.code 'angstrom_squared' + _name.category_id atom_type_scat + _name.object_id neutron_magnetic_j4_D + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Real save_ +save_atom_type_scat.neutron_magnetic_j4_e -save__atom_type_scat.neutron_magnetic_j4_C1 - -_definition.id '_atom_type_scat.neutron_magnetic_j4_C1' -_name.category_id atom_type_scat -_name.object_id neutron_magnetic_j4_C1 -_definition.update 2016-05-24 -_type.contents Real -_type.container Single -_description.text + _definition.id '_atom_type_scat.neutron_magnetic_j4_e' + _definition.update 2016-05-24 + _description.text ; - See definition for _atom_type_scat.neutron_magnetic_j0_A1 + See definition for _atom_type_scat.neutron_magnetic_j0_A1 ; - + _name.category_id atom_type_scat + _name.object_id neutron_magnetic_j4_e + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Real save_ +save_atom_type_scat.neutron_magnetic_j6_a1 -save__atom_type_scat.neutron_magnetic_j4_c2 - -_definition.id '_atom_type_scat.neutron_magnetic_j4_c2' -_name.category_id atom_type_scat -_name.object_id neutron_magnetic_j4_c2 -_definition.update 2016-05-24 -_type.contents Real -_type.container Single -_description.text + _definition.id '_atom_type_scat.neutron_magnetic_j6_A1' + _definition.update 2016-05-24 + _description.text ; - See definition for _atom_type_scat.neutron_magnetic_j0_A1 + See definition for _atom_type_scat.neutron_magnetic_j0_A1 ; -_units.code 'angstrom_squared' + _name.category_id atom_type_scat + _name.object_id neutron_magnetic_j6_A1 + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Real save_ +save_atom_type_scat.neutron_magnetic_j6_a2 -save__atom_type_scat.neutron_magnetic_j4_D - -_definition.id '_atom_type_scat.neutron_magnetic_j4_D' -_name.category_id atom_type_scat -_name.object_id neutron_magnetic_j4_D -_definition.update 2016-05-24 -_type.contents Real -_type.container Single -_description.text + _definition.id '_atom_type_scat.neutron_magnetic_j6_a2' + _definition.update 2016-05-24 + _description.text ; - See definition for _atom_type_scat.neutron_magnetic_j0_A1 + See definition for _atom_type_scat.neutron_magnetic_j0_A1 ; + _name.category_id atom_type_scat + _name.object_id neutron_magnetic_j6_a2 + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Real + _units.code angstrom_squared save_ +save_atom_type_scat.neutron_magnetic_j6_b1 -save__atom_type_scat.neutron_magnetic_j4_e - -_definition.id '_atom_type_scat.neutron_magnetic_j4_e' -_name.category_id atom_type_scat -_name.object_id neutron_magnetic_j4_e -_definition.update 2016-05-24 -_type.contents Real -_type.container Single -_description.text + _definition.id '_atom_type_scat.neutron_magnetic_j6_B1' + _definition.update 2016-05-24 + _description.text ; - See definition for _atom_type_scat.neutron_magnetic_j0_A1 + See definition for _atom_type_scat.neutron_magnetic_j0_A1 ; + _name.category_id atom_type_scat + _name.object_id neutron_magnetic_j6_B1 + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Real save_ +save_atom_type_scat.neutron_magnetic_j6_b2 -save__atom_type_scat.neutron_magnetic_j6_A1 - -_definition.id '_atom_type_scat.neutron_magnetic_j6_A1' -_name.category_id atom_type_scat -_name.object_id neutron_magnetic_j6_A1 -_definition.update 2016-05-24 -_type.contents Real -_type.container Single -_description.text + _definition.id '_atom_type_scat.neutron_magnetic_j6_b2' + _definition.update 2016-05-24 + _description.text ; - See definition for _atom_type_scat.neutron_magnetic_j0_A1 + See definition for _atom_type_scat.neutron_magnetic_j0_A1 ; + _name.category_id atom_type_scat + _name.object_id neutron_magnetic_j6_b2 + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Real + _units.code angstrom_squared save_ +save_atom_type_scat.neutron_magnetic_j6_c1 -save__atom_type_scat.neutron_magnetic_j6_a2 - -_definition.id '_atom_type_scat.neutron_magnetic_j6_a2' -_name.category_id atom_type_scat -_name.object_id neutron_magnetic_j6_a2 -_definition.update 2016-05-24 -_type.contents Real -_type.container Single -_description.text + _definition.id '_atom_type_scat.neutron_magnetic_j6_C1' + _definition.update 2016-05-24 + _description.text ; - See definition for _atom_type_scat.neutron_magnetic_j0_A1 + See definition for _atom_type_scat.neutron_magnetic_j0_A1 ; -_units.code 'angstrom_squared' + _name.category_id atom_type_scat + _name.object_id neutron_magnetic_j6_C1 + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Real save_ +save_atom_type_scat.neutron_magnetic_j6_c2 -save__atom_type_scat.neutron_magnetic_j6_B1 - -_definition.id '_atom_type_scat.neutron_magnetic_j6_B1' -_name.category_id atom_type_scat -_name.object_id neutron_magnetic_j6_B1 -_definition.update 2016-05-24 -_type.contents Real -_type.container Single -_description.text + _definition.id '_atom_type_scat.neutron_magnetic_j6_c2' + _definition.update 2016-05-24 + _description.text ; - See definition for _atom_type_scat.neutron_magnetic_j0_A1 - + See definition for _atom_type_scat.neutron_magnetic_j0_A1 ; + _name.category_id atom_type_scat + _name.object_id neutron_magnetic_j6_c2 + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Real + _units.code angstrom_squared save_ +save_atom_type_scat.neutron_magnetic_j6_d -save__atom_type_scat.neutron_magnetic_j6_b2 - -_definition.id '_atom_type_scat.neutron_magnetic_j6_b2' -_name.category_id atom_type_scat -_name.object_id neutron_magnetic_j6_b2 -_definition.update 2016-05-24 -_type.contents Real -_type.container Single -_description.text + _definition.id '_atom_type_scat.neutron_magnetic_j6_D' + _definition.update 2016-05-24 + _description.text ; - See definition for _atom_type_scat.neutron_magnetic_j0_A1 - + See definition for _atom_type_scat.neutron_magnetic_j0_A1 ; -_units.code 'angstrom_squared' + _name.category_id atom_type_scat + _name.object_id neutron_magnetic_j6_D + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Real save_ +save_atom_type_scat.neutron_magnetic_j6_e -save__atom_type_scat.neutron_magnetic_j6_C1 - -_definition.id '_atom_type_scat.neutron_magnetic_j6_C1' -_name.category_id atom_type_scat -_name.object_id neutron_magnetic_j6_C1 -_definition.update 2016-05-24 -_type.contents Real -_type.container Single -_description.text + _definition.id '_atom_type_scat.neutron_magnetic_j6_e' + _definition.update 2016-05-24 + _description.text ; - See definition for _atom_type_scat.neutron_magnetic_j0_A1 + See definition for _atom_type_scat.neutron_magnetic_j0_A1 ; + _name.category_id atom_type_scat + _name.object_id neutron_magnetic_j6_e + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Real save_ +save_atom_type_scat.neutron_magnetic_source -save__atom_type_scat.neutron_magnetic_j6_c2 + _definition.id '_atom_type_scat.neutron_magnetic_source' + _definition.update 2016-05-24 + _description.text +; + Reference to the source of magnetic neutron scattering factors + for a given atom type. -_definition.id '_atom_type_scat.neutron_magnetic_j6_c2' -_name.category_id atom_type_scat -_name.object_id neutron_magnetic_j6_c2 -_definition.update 2016-05-24 -_type.contents Real -_type.container Single -_description.text + Analogous tags: coreCIF:_atom_site.scat_source +; + _name.category_id atom_type_scat + _name.object_id neutron_magnetic_source + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Text + _description_example.case ; - See definition for _atom_type_scat.neutron_magnetic_j0_A1 + International Tables for Crystallography (2006). Vol. C, Section 4.4.5. ; -_units.code 'angstrom_squared' save_ +save_ATOM_SITE_FOURIER_WAVE_VECTOR -save__atom_type_scat.neutron_magnetic_j6_D - -_definition.id '_atom_type_scat.neutron_magnetic_j6_D' -_name.category_id atom_type_scat -_name.object_id neutron_magnetic_j6_D -_definition.update 2016-05-24 -_type.contents Real -_type.container Single -_description.text + _definition.id ATOM_SITE_FOURIER_WAVE_VECTOR + _definition.scope Category + _definition.class Loop + _definition.update 2016-05-24 + _description.text ; - See definition for _atom_type_scat.neutron_magnetic_j0_A1 + Data items in the ATOM_SITE_FOURIER_WAVE_VECTOR category record + details about the wave vectors of the Fourier terms used in the + structural model. This category is fully defined in the modulated + structures dictionary. +; + _name.category_id MS_GROUP + _name.object_id ATOM_SITE_FOURIER_WAVE_VECTOR + _category_key.name '_atom_site_Fourier_wave_vector.seq_id' + loop_ + _description_example.case + _description_example.detail +; + loop_ + _cell_wave_vector_seq_id + _cell_wave_vector_x + _cell_wave_vector_y + _cell_wave_vector_z + 1 0.30000 0.30000 0.00000 + 2 -0.60000 0.30000 0.00000 + loop_ + _atom_site_Fourier_wave_vector_seq_id + _atom_site_Fourier_wave_vector_x + _atom_site_Fourier_wave_vector_y + _atom_site_Fourier_wave_vector_z + _atom_site_Fourier_wave_vector_q_coeff + 1 -0.30000 0.60000 0.00000 [1 1] + 2 -0.60000 0.30000 0.00000 [0 1] + 3 -0.30000 -0.30000 0.00000 [-1 0] +; +; + Example 1 - Hypothetical example showing the modulation wave vector + components expressed using the array data item + _atom_site_Fourier_wave_vector_q_coeff. +; +; + loop_ + _cell_wave_vector_seq_id + _cell_wave_vector_x + _cell_wave_vector_y + _cell_wave_vector_z + 1 0.30000 0.30000 0.00000 + 2 -0.60000 0.30000 0.00000 + loop_ + _atom_site_Fourier_wave_vector_seq_id + _atom_site_Fourier_wave_vector_x + _atom_site_Fourier_wave_vector_y + _atom_site_Fourier_wave_vector_z + _atom_site_Fourier_wave_vector_q1_coeff + _atom_site_Fourier_wave_vector_q2_coeff + 1 -0.30000 0.60000 0.00000 1 1 + 2 -0.60000 0.30000 0.00000 0 1 + 3 -0.30000 -0.30000 0.00000 -1 0 +; +; + Example 1 - As example 1, but using separate data items for each + individual component of the modulation wave vector. +; + +save_ + +save_atom_site_fourier_wave_vector.q1_coeff + + _definition.id '_atom_site_Fourier_wave_vector.q1_coeff' + _alias.definition_id '_atom_site_Fourier_wave_vector_q1_coeff' + _definition.update 2016-06-21 + _description.text +; + For a given incommensurate modulation that contributes to the + structure, the wave vector of the modulation can be expressed as an + integer linear combination of the d independent wave vectors that + define the (3+d)-dimensional superspace. The q1_coeff tag holds the + integer coefficient of the contribution of the first independent wave + vector, the q2_coeff tag holds the integer coefficient of the + contribution of the second independent wave vector, and so on. At the + time of this writing, no examples with more than three independent + wave vectors are known, though there is no theoretical limit to the + number that could occur. These tags are not explicitly magnetic; they + are equally applicable to any incommensurate modulation. +; + _name.category_id atom_site_Fourier_wave_vector + _name.object_id q1_coeff + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Integer + _method.purpose Evaluation + _method.expression +; + with a as atom_site_Fourier_wave_vector + a.q1_coeff = a.q_coeff[0] ; save_ +save_atom_site_fourier_wave_vector.q2_coeff -save__atom_type_scat.neutron_magnetic_j6_e - -_definition.id '_atom_type_scat.neutron_magnetic_j6_e' -_name.category_id atom_type_scat -_name.object_id neutron_magnetic_j6_e -_definition.update 2016-05-24 -_type.contents Real -_type.container Single -_description.text + _definition.id '_atom_site_Fourier_wave_vector.q2_coeff' + _alias.definition_id '_atom_site_Fourier_wave_vector_q2_coeff' + _definition.update 2016-06-21 + _description.text ; - See definition for _atom_type_scat.neutron_magnetic_j0_A1 - + For a given incommensurate modulation that contributes to the + structure, the wave vector of the modulation can be expressed as an + integer linear combination of the d independent wave vectors that + define the (3+d)-dimensional superspace. The q1_coeff tag holds the + integer coefficient of the contribution of the first independent wave + vector, the q2_coeff tag holds the integer coefficient of the + contribution of the second independent wave vector, and so on. At the + time of this writing, no examples with more than three independent + wave vectors are known, though there is no theoretical limit to the + number that could occur. These tags are not explicitly magnetic; they + are equally applicable to any incommensurate modulation. +; + _name.category_id atom_site_Fourier_wave_vector + _name.object_id q2_coeff + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Integer + _method.purpose Evaluation + _method.expression +; + with a as atom_site_Fourier_wave_vector + a.q2_coeff = a.q_coeff[1] ; save_ +save_atom_site_fourier_wave_vector.q3_coeff -save__atom_type_scat.neutron_magnetic_source + _definition.id '_atom_site_Fourier_wave_vector.q3_coeff' + _alias.definition_id '_atom_site_Fourier_wave_vector_q3_coeff' + _definition.update 2016-06-21 + _description.text +; + For a given incommensurate modulation that contributes to the + structure, the wave vector of the modulation can be expressed as an + integer linear combination of the d independent wave vectors that + define the (3+d)-dimensional superspace. The q1_coeff tag holds the + integer coefficient of the contribution of the first independent wave + vector, the q2_coeff tag holds the integer coefficient of the + contribution of the second independent wave vector, and so on. At the + time of this writing, no examples with more than three independent + wave vectors are known, though there is no theoretical limit to the + number that could occur. These tags are not explicitly magnetic; they + are equally applicable to any incommensurate modulation. +; + _name.category_id atom_site_Fourier_wave_vector + _name.object_id q3_coeff + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Integer -_definition.id '_atom_type_scat.neutron_magnetic_source' -_name.category_id atom_type_scat -_name.object_id neutron_magnetic_source -_definition.update 2016-05-24 +save_ -_description.text -; - Reference to the source of magnetic neutron scattering factors - for a given atom type. +save_atom_site_fourier_wave_vector.q_coeff - Analogous tags: coreCIF:_atom_site.scat_source + _definition.id '_atom_site_Fourier_wave_vector.q_coeff' + _alias.definition_id '_atom_site_Fourier_wave_vector_q_coeff' + _definition.update 2016-06-21 + _description.text ; -_type.contents Text -_type.container Single - -loop_ - _description_example.case - + For a given incommensurate modulation that contributes to the + structure, the wave vector of the modulation can be expressed as an + integer linear combination of the d independent wave vectors that + define the (3+d)-dimensional superspace. This tag holds each of + the integer coefficients as an array. At the + time of this writing, no examples with more than three independent + wave vectors are known, though there is no theoretical limit to the + number that could occur. These tags are not explicitly magnetic; they + are equally applicable to any incommensurate modulation. ; -International Tables for Crystallography (2006). Vol. C, Section 4.4.5. -; + _name.category_id atom_site_Fourier_wave_vector + _name.object_id q_coeff + _type.purpose Describe + _type.source Assigned + _type.container Array + _type.dimension '[]' + _type.contents Integer save_ +save_PARENT_PROPAGATION_VECTOR -############################### -## PARENT_PROPAGATION_VECTOR ## -############################### - -save_parent_propagation_vector - -_definition.id parent_propagation_vector -_name.category_id MAGNETIC -_name.object_id parent_propagation_vector -_definition.update 2016-06-09 -_description.text + _definition.id PARENT_PROPAGATION_VECTOR + _definition.scope Category + _definition.class Loop + _definition.update 2016-06-09 + _description.text ; - This looped category allows for the presentation of the - fundamental magnetic wave vectors in the setting of the parent - structure. In general, there can be more than one fundamental - magnetic wave vector. See the PARENT_SPACE_GROUP category for - more information about parent space groups. + This looped category allows for the presentation of the + fundamental magnetic wave vectors in the setting of the parent + structure. In general, there can be more than one fundamental + magnetic wave vector. See the PARENT_SPACE_GROUP category for + more information about parent space groups. ; -_definition.scope Category -_definition.class Loop - -loop_ - _category_key.name '_parent_propagation_vector.id' - -loop_ - _description_example.case - + _name.category_id MAGNETIC + _name.object_id PARENT_PROPAGATION_VECTOR + _category_key.name '_parent_propagation_vector.id' + _description_example.case ; loop_ _parent_propagation_vector.id @@ -2500,372 +2432,360 @@ loop_ k2 [0 1 0] k3 [1 0 0] ; -save_ +save_ -save__parent_propagation_vector.id +save_parent_propagation_vector.id -_definition.id '_parent_propagation_vector.id' -_name.category_id parent_propagation_vector -_name.object_id id -_definition.update 2016-06-09 -_description.text + _definition.id '_parent_propagation_vector.id' + _definition.update 2016-06-09 + _description.text ; A code that uniquely identifies a fundamental magnetic propagation vector. ; -_type.contents Text -_type.container Single -_type.purpose Key + _name.category_id parent_propagation_vector + _name.object_id id + _type.purpose Key + _type.source Assigned + _type.container Single + _type.contents Text save_ +save_parent_propagation_vector.kxkykz -save__parent_propagation_vector.kxkykz - -_definition.id '_parent_propagation_vector.kxkykz' -_name.category_id parent_propagation_vector -_name.object_id kxkykz -_definition.update 2016-06-09 -_description.text + _definition.id '_parent_propagation_vector.kxkykz' + _definition.update 2016-06-09 + _description.text ; - A fundamental magnetic propagation vector in unitless reciprocal-lattice - units of the parent space group setting. + A fundamental magnetic propagation vector in unitless reciprocal-lattice + units of the parent space group setting. ; -_type.contents Real -_type.container Matrix -_type.dimension '[3]' + _name.category_id parent_propagation_vector + _name.object_id kxkykz + _type.purpose Describe + _type.source Assigned + _type.container Matrix + _type.dimension '[3]' + _type.contents Real save_ -######################## -## PARENT_SPACE_GROUP ## -######################## - -save_parent_space_group +save_PARENT_SPACE_GROUP -_definition.id parent_space_group -_name.category_id MAGNETIC -_name.object_id parent_space_group -_definition.update 2016-06-09 -_description.text + _definition.id PARENT_SPACE_GROUP + _definition.scope Category + _definition.class Set + _definition.update 2016-06-09 + _description.text ; - This category provides information about the space group and - setting of a non-magnetic parent structure which is related to - the present magnetic structure by a group-subgroup relationship. - In general, the choice of a parent structure is not unique; it - could be the lowest-symmetry non-magnetic structure obtained by - simply setting all magnetic moments to zero, or a higher-symmetry - approximation to this structure which idealizes some of the - atomic coordinates. The designation of a parent structure is - common but optional for a magnetic-structure description. This - category could also be used to designate high-symmetry parent - structures of low-symmetry non-magnetic structures. As an - alternative to this category, one can define a parent structure - in a separate data block, and then relate the parent and child - space-group settings by conveying an appropriate inter-data-block - basis transformation in each data block. + This category provides information about the space group and + setting of a non-magnetic parent structure which is related to + the present magnetic structure by a group-subgroup relationship. + In general, the choice of a parent structure is not unique; it + could be the lowest-symmetry non-magnetic structure obtained by + simply setting all magnetic moments to zero, or a higher-symmetry + approximation to this structure which idealizes some of the + atomic coordinates. The designation of a parent structure is + common but optional for a magnetic-structure description. This + category could also be used to designate high-symmetry parent + structures of low-symmetry non-magnetic structures. As an + alternative to this category, one can define a parent structure + in a separate data block, and then relate the parent and child + space-group settings by conveying an appropriate inter-data-block + basis transformation in each data block. - Analogous tags: none + Analogous tags: none ; -_definition.scope Category -_definition.class Set + _name.category_id MAGNETIC + _name.object_id PARENT_SPACE_GROUP save_ +save_parent_space_group.child_transform_pp_abc -save__parent_space_group.child_transform_Pp_abc - -_definition.id '_parent_space_group.child_transform_Pp_abc' -_name.category_id parent_space_group -_name.object_id child_transform_Pp_abc -_definition.update 2023-01-17 -_description.text + _definition.id '_parent_space_group.child_transform_Pp_abc' + _definition.update 2023-01-17 + _description.text ; - This item specifies the transformation (P,p) of the basis vectors - and origin of the present setting of the parent space group to - those of the present setting of the child space group. The basis - vectors (a',b',c') of the child are described as linear - combinations of the basis vectors (a,b,c) of the parent, and the - origin shift (ox,oy,oz) is displayed in the lattice coordinates - of the parent. The Jones faithful notation and possible values - are identical to those of symCIF:_space_group.transform_Pp_abc, - except that the point and translational components are separated - by a semicolon. If the child structure is incommensurate, the - transformation applies to the present setting of the basic - space group of the incommensurate structure. + This item specifies the transformation (P,p) of the basis vectors + and origin of the present setting of the parent space group to + those of the present setting of the child space group. The basis + vectors (a',b',c') of the child are described as linear + combinations of the basis vectors (a,b,c) of the parent, and the + origin shift (ox,oy,oz) is displayed in the lattice coordinates + of the parent. The Jones faithful notation and possible values + are identical to those of symCIF:_space_group.transform_Pp_abc, + except that the point and translational components are separated + by a semicolon. If the child structure is incommensurate, the + transformation applies to the present setting of the basic + space group of the incommensurate structure. - Analogous tags: symCIF:_space_group.transform_Pp_abc + Analogous tags: symCIF:_space_group.transform_Pp_abc ; -_type.contents Real -_type.dimension '[4,4]' -_type.container Matrix -_type.purpose Number -_type.source Assigned + _name.category_id parent_space_group + _name.object_id child_transform_Pp_abc + _type.purpose Number + _type.source Assigned + _type.container Matrix + _type.dimension '[4,4]' + _type.contents Real save_ +save_parent_space_group.it_number -save__parent_space_group.IT_number - -_definition.id '_parent_space_group.IT_number' -_name.category_id parent_space_group -_name.object_id IT_number -_definition.update 2016-06-09 -_description.text + _definition.id '_parent_space_group.IT_number' + _definition.update 2016-06-09 + _description.text ; - Analogous tags: Perfectly analogous to - symCIF:_space_group.IT_number except that it applies to the - parent structure. + Analogous tags: Perfectly analogous to + symCIF:_space_group.IT_number except that it applies to the + parent structure. ; -_type.contents Text -_type.container Single - + _name.category_id parent_space_group + _name.object_id IT_number + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Text save_ +save_parent_space_group.name_h-m_alt -save__parent_space_group.name_H-M_alt - -_definition.id '_parent_space_group.name_H-M_alt' -_name.category_id parent_space_group -_name.object_id name_H_M_alt -_definition.update 2023-07-17 -_description.text + _definition.id '_parent_space_group.name_H-M_alt' + _definition.update 2023-07-17 + _description.text ; - Analogous tags: Perfectly analogous to - symCIF:_space_group.name_H-M_alt except that it applies - to the parent structure. + Analogous tags: Perfectly analogous to + symCIF:_space_group.name_H-M_alt except that it applies + to the parent structure. ; -_type.contents Text -_type.container Single - + _name.category_id parent_space_group + _name.object_id name_H_M_alt + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Text save_ +save_parent_space_group.reference_setting -save__parent_space_group.reference_setting - -_definition.id '_parent_space_group.reference_setting' -_name.category_id parent_space_group -_name.object_id reference_setting -_definition.update 2016-06-09 -_description.text + _definition.id '_parent_space_group.reference_setting' + _definition.update 2016-06-09 + _description.text ; - Analogous tags: Perfectly analogous to - symCIF:_space_group.reference_setting except that it applies to - the parent structure. + Analogous tags: Perfectly analogous to + symCIF:_space_group.reference_setting except that it applies to + the parent structure. ; -_type.contents Text -_type.container Single + _name.category_id parent_space_group + _name.object_id reference_setting + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Text save_ +save_parent_space_group.transform_pp_abc -save__parent_space_group.transform_Pp_abc - -_definition.id '_parent_space_group.transform_Pp_abc' -_name.category_id parent_space_group -_name.object_id transform_Pp_abc -_definition.update 2016-06-09 -_description.text + _definition.id '_parent_space_group.transform_Pp_abc' + _definition.update 2016-06-09 + _description.text ; - Analogous tags: Notation and usage is analogous to - symCIF:_space_group.transform_Pp_abc except that it applies to - the parent structure, and that the point and translational - components are separated by a semicolon. + Analogous tags: Notation and usage is analogous to + symCIF:_space_group.transform_Pp_abc except that it applies to + the parent structure, and that the point and translational + components are separated by a semicolon. ; -_type.contents Real -_type.container Matrix -_type.dimension '[4,4]' -_type.purpose Number -_type.source Assigned + _name.category_id parent_space_group + _name.object_id transform_Pp_abc + _type.purpose Number + _type.source Assigned + _type.container Matrix + _type.dimension '[4,4]' + _type.contents Real save_ +save_SPACE_GROUP_MAGN -###################### -## SPACE_GROUP_MAGN ## -###################### + _definition.id SPACE_GROUP_MAGN + _definition.scope Category + _definition.class Set + _definition.update 2016-10-10 + _description.text +; + The data items in this category provide identifying and/or + descriptive information about the relevant magnetic symmetry + group and setting. +; + _name.category_id MAGNETIC + _name.object_id SPACE_GROUP_MAGN + +save_ + +save_space_group_magn.name_bns + + _definition.id '_space_group_magn.name_BNS' + _definition.update 2016-05-24 + _description.text +; + See _space_group_magn_number_OG for a description of magnetic + space groups (MSGs). + The Belov-Neronova-Smirnova (BNS) symbol for a MSG is based on + the short Hermann-Mauguin space-group symbol of non-magnetic + space group F for MSGs of types 1-3 or its subgroup D for MSGs of + type 4. For a type-1 MSG, the symbol for the MSG is identical + with the unprimed symbol of F. For a type-2 MSG, its symbol is + the symbol of the space group F followed by 1'. For a type-3 + MSG, one starts with the symbol for F and then primes any + non-translational generators whose corresponding MSG elements are + time reversed. For a type-4 MSG, the non-translational generators + are never primed. A subscript always appears on the first + (lattice) character of the symbol of a type-4 MSG, and + communicates that a pure time-reversal element is included in the + point group of the MSG. The value of this subscript indicates the + magnetic lattice of the MSG, and specifically indicates the + translational part of the generator whose point part is the pure + time reversal. Note that OG and BNS symbols are identical for + MSGs of types 1-3, but differ substantially for MSGs of type 4. + + Analogous tags: symCIF:_space_group.name_H-M_ref + + Ref: 'Magnetic Group Tables' by D.B. Litvin at + http://www.iucr.org/publ/978-0-9553602-2-0. ISO-MAG tables of H.T. + Stokes and B.J. Campbell at http://iso.byu.edu. +; + _name.category_id space_group_magn + _name.object_id name_BNS + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Text -save_SPACE_GROUP_MAGN + loop_ + _description_example.case + "P 1" + "P 1 1'" + "P_S 1" + "P -1" + "P -1 1'" + "P -1'" + "P_2s -1" + "I a' -3 d'" + +save_ + +save_space_group_magn.name_og + + _definition.id '_space_group_magn.name_OG' + _definition.update 2016-05-24 + _description.text +; + See _space_group_magn.number_OG for more information on magnetic + space groups (MSGs). The Opechowski-Guccione (OG) symbol for an + MSG is based on the short Hermann-Mauguin space-group symbol of + non-magnetic space group F. For a type-1 MSG, the OG symbol for + the MSG is identical with the unprimed symbol of F. For a type-2 + MSG, the OG symbol is the symbol of the non-magnetic space group + F followed by 1'. For a type-3 or type-4 MSG, the OG symbol is + constructed by starting with the symbol for F and then priming + the symbols of any non-translational generators whose + corresponding MSG elements are time reversed. When a + non-translational generator symbol could potentially represent both + time-reversed and non-time-reversed symmetry elements, the prime + placement is as described in the Magnetic Group Tables of + Litvin. A subscript always appears on the first (lattice) + character of the symbol of a type-4 MSG, and communicates that a + pure time-reversal element is included in the point group of the + MSG. The value of this subscript indicates the magnetic lattice + of the MSG. Note that OG and BNS symbols are identical for MSGs + of types 1-3, but differ substantially for MSGs of type 4. + + Analogous tags: symCIF:_space_group.name_H-M_ref + + Ref: 'Magnetic Group Tables' by D.B. Litvin at + http://www.iucr.org/publ/978-0-9553602-2-0. ISO-MAG tables of H.T. + Stokes and B.J. Campbell at http://iso.byu.edu. +; + _name.category_id space_group_magn + _name.object_id name_OG + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Text -_definition.id space_group_magn -_name.category_id MAGNETIC -_name.object_id space_group_magn -_definition.update 2016-10-10 -_description.text -; - The data items in this category provide identifying and/or - descriptive information about the relevant magnetic symmetry - group and setting. - -; -_definition.scope Category -_definition.class Set - -save_ - - -save__space_group_magn.name_BNS - -_definition.id '_space_group_magn.name_BNS' -_name.category_id space_group_magn -_name.object_id name_BNS -_definition.update 2016-05-24 + loop_ + _description_example.case + "P 1" + "P 1 1'" + "P_S 1" + "P -1" + "P -1 1'" + "P -1'" + "P_2s -1" + "I a' -3' d'" + +save_ + +save_space_group_magn.number_bns + + _definition.id '_space_group_magn.number_BNS' + _definition.update 2016-10-10 + _description.text +; + See _space_group_magn.number_OG for a description of magnetic + space groups (MSGs). The Belov-Neronova-Smirnova (BNS) number for + an MSG is composed of two positive integers separated by a + period. The first integer lies in the range [1-230] and indicates + the non-magnetic space group F for MSGs of types 1-3 or the + non-magnetic space group of the subgroup D for MSGs of type 4. The + second integer is sequential over all MSGs associated with the + same crystal family. + There are 1651 distinct equivalence classes of MSGs, each of + which has a unique BNS number. These equivalence classes are most + accurately referred to as magnetic space-group "types", + following the usage in the International Tables for Crystallography. + But the word "type" is also commonly used to + indicate the four-fold classification of MSGs presented above. + To avoid confusion, the word "type" is only used in the latter + sense here. + + Analogous tags: symCIF:_space_group.number_IT + + Ref: 'Magnetic Group Tables' by D.B. Litvin at + http://www.iucr.org/publ/978-0-9553602-2-0. ISO-MAG tables of H.T. + Stokes and B.J. Campbell at http://iso.byu.edu. +; + _name.category_id space_group_magn + _name.object_id number_BNS + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Text -_description.text -; - See _space_group_magn_number_OG for a description of magnetic - space groups (MSGs). - The Belov-Neronova-Smirnova (BNS) symbol for a MSG is based on - the short Hermann-Mauguin space-group symbol of non-magnetic - space group F for MSGs of types 1-3 or its subgroup D for MSGs of - type 4. For a type-1 MSG, the symbol for the MSG is identical - with the unprimed symbol of F. For a type-2 MSG, its symbol is - the symbol of the space group F followed by 1'. For a type-3 - MSG, one starts with the symbol for F and then primes any - non-translational generators whose corresponding MSG elements are - time reversed. For a type-4 MSG, the non-translational generators - are never primed. A subscript always appears on the first - (lattice) character of the symbol of a type-4 MSG, and - communicates that a pure time-reversal element is included in the - point group of the MSG. The value of this subscript indicates the - magnetic lattice of the MSG, and specifically indicates the - translational part of the generator whose point part is the pure - time reversal. Note that OG and BNS symbols are identical for - MSGs of types 1-3, but differ substantially for MSGs of type 4. - - Analogous tags: symCIF:_space_group.name_H-M_ref - - Ref: 'Magnetic Group Tables' by D.B. Litvin at - http://www.iucr.org/publ/978-0-9553602-2-0. ISO-MAG tables of H.T. - Stokes and B.J. Campbell at http://iso.byu.edu. -; -_type.contents Text -_type.container Single - -loop_ - _description_example.case - "P 1" - "P 1 1'" - "P_S 1" - "P -1" - "P -1 1'" - "P -1'" - "P_2s -1" - "I a' -3 d'" - -save_ - - -save__space_group_magn.name_OG - -_definition.id '_space_group_magn.name_OG' -_name.category_id space_group_magn -_name.object_id name_OG -_definition.update 2016-05-24 - -_description.text -; - See _space_group_magn.number_OG for more information on magnetic - space groups (MSGs). The Opechowski-Guccione (OG) symbol for an - MSG is based on the short Hermann-Mauguin space-group symbol of - non-magnetic space group F. For a type-1 MSG, the OG symbol for - the MSG is identical with the unprimed symbol of F. For a type-2 - MSG, the OG symbol is the symbol of the non-magnetic space group - F followed by 1'. For a type-3 or type-4 MSG, the OG symbol is - constructed by starting with the symbol for F and then priming - the symbols of any non-translational generators whose - corresponding MSG elements are time reversed. When a - non-translational generator symbol could potentially represent both - time-reversed and non-time-reversed symmetry elements, the prime - placement is as described in the Magnetic Group Tables of - Litvin. A subscript always appears on the first (lattice) - character of the symbol of a type-4 MSG, and communicates that a - pure time-reversal element is included in the point group of the - MSG. The value of this subscript indicates the magnetic lattice - of the MSG. Note that OG and BNS symbols are identical for MSGs - of types 1-3, but differ substantially for MSGs of type 4. - - Analogous tags: symCIF:_space_group.name_H-M_ref - - Ref: 'Magnetic Group Tables' by D.B. Litvin at - http://www.iucr.org/publ/978-0-9553602-2-0. ISO-MAG tables of H.T. - Stokes and B.J. Campbell at http://iso.byu.edu. -; -_type.contents Text -_type.container Single - -loop_ - _description_example.case - "P 1" - "P 1 1'" - "P_S 1" - "P -1" - "P -1 1'" - "P -1'" - "P_2s -1" - "I a' -3' d'" - -save_ - - -save__space_group_magn.number_BNS - -_definition.id '_space_group_magn.number_BNS' -_name.category_id space_group_magn -_name.object_id number_BNS -_definition.update 2016-10-10 - -_description.text -; - See _space_group_magn.number_OG for a description of magnetic - space groups (MSGs). The Belov-Neronova-Smirnova (BNS) number for - an MSG is composed of two positive integers separated by a - period. The first integer lies in the range [1-230] and indicates - the non-magnetic space group F for MSGs of types 1-3 or the - non-magnetic space group of the subgroup D for MSGs of type 4. The - second integer is sequential over all MSGs associated with the - same crystal family. - There are 1651 distinct equivalence classes of MSGs, each of - which has a unique BNS number. These equivalence classes are most - accurately referred to as magnetic space-group "types", - following the usage in the International Tables for Crystallography. - But the word "type" is also commonly used to - indicate the four-fold classification of MSGs presented above. - To avoid confusion, the word "type" is only used in the latter - sense here. - - Analogous tags: symCIF:_space_group.number_IT - - Ref: 'Magnetic Group Tables' by D.B. Litvin at - http://www.iucr.org/publ/978-0-9553602-2-0. ISO-MAG tables of H.T. - Stokes and B.J. Campbell at http://iso.byu.edu. -; -_type.contents Text -_type.container Single - -loop_ - _description_example.case - 1.1 - 1.2 - 1.3 - 2.4 - 2.5 - 2.6 - 2.7 - 230.149 - -save_ - - -save__space_group_magn.OG_wavevector_kxkykz - -_definition.id '_space_group_magn.OG_wavevector_kxkykz' -_name.category_id space_group_magn -_name.object_id OG_wavevector_kxkykz -_definition.update 2016-05-24 -_description.text + loop_ + _description_example.case + 1.1 + 1.2 + 1.3 + 2.4 + 2.5 + 2.6 + 2.7 + 230.149 + +save_ + +save_space_group_magn.og_wavevector_kxkykz + + _definition.id '_space_group_magn.OG_wavevector_kxkykz' + _definition.update 2016-05-24 + _description.text ; The magnetic propagation vector (k) of the OG(k)-supercell description, which determines the time-reversal component of each @@ -2880,723 +2800,718 @@ _description.text symmetry; it cannot be omitted from such a description without ambiguity. ; -_type.container Matrix -_type.contents Real -_type.dimension '[3]' -_type.purpose Number + _name.category_id space_group_magn + _name.object_id OG_wavevector_kxkykz + _type.purpose Number + _type.source Assigned + _type.container Matrix + _type.dimension '[3]' + _type.contents Real save_ +save_space_group_magn.point_group_name -save__space_group_magn.point_group_name - -_definition.id '_space_group_magn.point_group_name' -_name.category_id space_group_magn -_name.object_id point_group_name -_definition.update 2016-05-24 - -_description.text + _definition.id '_space_group_magn.point_group_name' + _definition.update 2016-05-24 + _description.text ; - Any magnetic point group (MPG) can be constructed by starting - with a non-magnetic point group P, and then by adding a time-reversal - component to some or all or none of its elements. For a - type-1 MPG, M = P, there are no time-reversed elements. For a - type-2 MPG, M = P + P1', there is both a time-reversed and a - non-time-reversed copy of each element in P. For a type-3 MPG, - M = Q + (P - Q)1', there is a subgroup Q of P of index 2 whose - elements are not time reversed, whereas the remaining elements - in P-Q are time reversed. For a type-1 MPG, the symbol is identical - with the symbol for the non-magnetic point group P. For a type-2 MPG, - the symbol is the symbol for P followed by the symbol 1'. For a - type-3 MPG, the symbol is that of P with a prime added to each - time-reversed generator. + Any magnetic point group (MPG) can be constructed by starting + with a non-magnetic point group P, and then by adding a time-reversal + component to some or all or none of its elements. For a + type-1 MPG, M = P, there are no time-reversed elements. For a + type-2 MPG, M = P + P1', there is both a time-reversed and a + non-time-reversed copy of each element in P. For a type-3 MPG, + M = Q + (P - Q)1', there is a subgroup Q of P of index 2 whose + elements are not time reversed, whereas the remaining elements + in P-Q are time reversed. For a type-1 MPG, the symbol is identical + with the symbol for the non-magnetic point group P. For a type-2 MPG, + the symbol is the symbol for P followed by the symbol 1'. For a + type-3 MPG, the symbol is that of P with a prime added to each + time-reversed generator. - Analogous tags: symCIF:_space_group.point_group_H-M + Analogous tags: symCIF:_space_group.point_group_H-M - Ref: 'Magnetic Group Tables' by D.B. Litvin at - http://www.iucr.org/publ/978-0-9553602-2-0 + Ref: 'Magnetic Group Tables' by D.B. Litvin at + http://www.iucr.org/publ/978-0-9553602-2-0 ; -_type.contents Text -_type.container Single - -loop_ - _description_example.case - 1 - "1 1'" - -1 - "-1 1'" - "-1'" - "4 m m" - "4' m' m" - "4' m m'" - -save_ + _name.category_id space_group_magn + _name.object_id point_group_name + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Text + loop_ + _description_example.case + "1" + "1 1'" + "-1" + "-1 1'" + "-1'" + "4 m m" + "4' m' m" + "4' m m'" + +save_ + +save_space_group_magn.point_group_number + + _definition.id '_space_group_magn.point_group_number' + _definition.update 2016-10-10 + _description.text +; + Each of the 122 crystallographic magnetic point groups can be + associated with exactly one crystallographic non-magnetic space + group by removing the time-reversal component from each group + operator. The identifying number for each such group is taken + from the "Survey of 3-dimensional magnetic point group types" + from the "Magnetic Group Tables" of D.B. Litvin. This number is + composed of three integers: (1) an integer from 1 to 32 that + corresponds to the non-magnetic point group; (2) an integer that + runs sequentially over each of the magnetic point groups + associated with a given non-magnetic point group; and (3) a + redundant third integer that runs from 1 to 122. + + Ref: 'Magnetic Group Tables' by D.B. Litvin at + http://www.iucr.org/publ/978-0-9553602-2-0 +; + _name.category_id space_group_magn + _name.object_id point_group_number + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Text -save__space_group_magn.point_group_number + loop_ + _description_example.case + 1.1.1 + 32.5.122 + +save_ + +save_space_group_magn.ssg_name + + _definition.id '_space_group_magn.ssg_name' + _definition.update 2016-10-10 + _description.text +; + The Belov-Neronova-Smirnova (BNS) symbol for a magnetic + superspace group (MSSG) is based on the symbol of the + non-magnetic superspace group (SSG) obtained by eliminating all + time-reversed operators from the group, as listed in the ISO(3+d)D + tables of Stokes and Campbell. If the magnetic basic space group + (MBSG) is of type-1 or type-3 (also known as type-3a), its BNS symbol + merely replaces that of the basic space-group (BSG). If the MBSG + is of type-2 or type-4 (also known as type-3b), an additional + phase-shift symbol associated with the time-reversal generator is added + to each modulation vector. If the MBSG is of type-4, the BNS + symbol of the MSSG is further modified to explicitly show the + time-reversal generator (1') at the end, and the anti-centering + subscript is moved from the lattice symbol to the 1' so as to + clearly indicate the fractional external-space translation of + this generator. + The examples are based on SSG 47.1.9.3 Pmmm(0,0,g)ss0 in (3+1)D. + + Analogous tags: msCIF:_space_group.ssg_name + + Ref: ISO-MAG tables of H.T. Stokes and B.J. Campbell at + http://iso.byu.edu. ISO(3+d)D tables of H.T. Stokes and B.J. + Campbell at http://iso.byu.edu. +; + _name.category_id space_group_magn + _name.object_id ssg_name + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Text -_definition.id '_space_group_magn.point_group_number' -_name.category_id space_group_magn -_name.object_id point_group_number -_definition.update 2016-10-10 -_description.text + loop_ + _description_example.case + _description_example.detail + Pmmm(0,0,g)ss0 ; - - Each of the 122 crystallographic magnetic point groups can be - associated with exactly one crystallographic non-magnetic space - group by removing the time-reversal component from each group - operator. The identifying number for each such group is taken - from the "Survey of 3-dimensional magnetic point group types" - from the "Magnetic Group Tables" of D.B. Litvin. This number is - composed of three integers: (1) an integer from 1 to 32 that - corresponds to the non-magnetic point group; (2) an integer that - runs sequentially over each of the magnetic point groups - associated with a given non-magnetic point group; and (3) a - redundant third integer that runs from 1 to 122. - - Ref: 'Magnetic Group Tables' by D.B. Litvin at - http://www.iucr.org/publ/978-0-9553602-2-0 + type-1 MBSG Pmmm ; -_type.contents Text -_type.container Single -loop_ - _description_example.case - "1.1.1" - "32.5.122" - -save_ - - -save__space_group_magn.ssg_name - -_definition.id '_space_group_magn.ssg_name' -_name.category_id space_group_magn -_name.object_id ssg_name -_definition.update 2016-10-10 - -_description.text + Pmmm1'(0,0,g)ss00 ; - The Belov-Neronova-Smirnova (BNS) symbol for a magnetic - superspace group (MSSG) is based on the symbol of the - non-magnetic superspace group (SSG) obtained by eliminating all - time-reversed operators from the group, as listed in the ISO(3+d)D - tables of Stokes and Campbell. If the magnetic basic space group - (MBSG) is of type-1 or type-3 (also known as type-3a), its BNS symbol - merely replaces that of the basic space-group (BSG). If the MBSG - is of type-2 or type-4 (also known as type-3b), an additional - phase-shift symbol associated with the time-reversal generator is added - to each modulation vector. If the MBSG is of type-4, the BNS - symbol of the MSSG is further modified to explicitly show the - time-reversal generator (1') at the end, and the anti-centering - subscript is moved from the lattice symbol to the 1' so as to - clearly indicate the fractional external-space translation of - this generator. - The examples are based on SSG 47.1.9.3 Pmmm(0,0,g)ss0 in (3+1)D. - - Analogous tags: msCIF:_space_group.ssg_name - - Ref: ISO-MAG tables of H.T. Stokes and B.J. Campbell at - http://iso.byu.edu. ISO(3+d)D tables of H.T. Stokes and B.J. - Campbell at http://iso.byu.edu. + type-2 MBSG Pmmm1', with no basic-cell or + modulated moments allowed ; -_type.contents Text -_type.container Single - -loop_ - _description_example.case - _description_example.detail - "Pmmm(0,0,g)ss0" "type-1 MBSG Pmmm" - "Pmmm1'(0,0,g)ss00" -; type-2 MBSG Pmmm1', with no basic-cell or - modulated moments allowed + Pmmm1'(0,0,g)ss0s ; - "Pmmm1'(0,0,g)ss0s" -; type-2 MBSG Pmmm1', with magnetic modulations - allowed, but not basic-cell moments + type-2 MBSG Pmmm1', with magnetic modulations + allowed, but not basic-cell moments ; - "Pm'm'm(0,0,g)ss0" "type-3 MBSG Pm'm'm" - "Pmmm1'_a(0,0,g)ss00" - "type-4 MBSG P_ammm with purely external anti-centering" - "Pmmm1'_a(0,0,g)ss0s" - "type-4 MBSG P_ammm with superspace anti-centering" -save_ - - -save__space_group_magn.ssg_number - -_definition.id '_space_group_magn.ssg_number' -_name.category_id space_group_magn -_name.object_id ssg_number -_definition.update 2016-10-10 - -_description.text + Pm'm'm(0,0,g)ss0 ; - The Belov-Neronova-Smirnova (BNS) number for a magnetic - superspace group. This tag is being held in reserve until a - future numbering scheme is approved. - - Analogous tags: msCIF:_space_group.ssg_number + type-3 MBSG Pm'm'm +; + Pmmm1'_a(0,0,g)ss00 +; + type-4 MBSG P_ammm with purely external anti-centering +; + Pmmm1'_a(0,0,g)ss0s +; + type-4 MBSG P_ammm with superspace anti-centering ; -_type.contents Text -_type.container Single - save_ +save_space_group_magn.ssg_number -save__space_group_magn.transform_BNS_Pp + _definition.id '_space_group_magn.ssg_number' + _definition.update 2016-10-10 + _description.text +; + The Belov-Neronova-Smirnova (BNS) number for a magnetic + superspace group. This tag is being held in reserve until a + future numbering scheme is approved. -_definition.id '_space_group_magn.transform_BNS_Pp' -_name.category_id space_group_magn -_name.object_id transform_BNS_Pp -_definition.update 2016-10-10 -_description.text + Analogous tags: msCIF:_space_group.ssg_number ; - This item specifies the transformation matrix Pp of the - basis vectors and origin of the current setting to those - of the Belov-Neronova-Smirnova setting presented in the - ISO-MAG tables. The basis vectors (a',b',c') of the BNS - setting are obtained as - - (a',b',c',1) = Pp (a,b,c,1) + _name.category_id space_group_magn + _name.object_id ssg_number + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Text - where (a,b,c) are the current basis vectors. +save_ - Ref: ISO-MAG tables of H.T. Stokes and B.J. Campbell at - http://iso.byu.edu +save_space_group_magn.transform_bns_pp - Wondratschek, H., Aroyo, M. I., Souvignier, B. and Chapuis, G. - Transformation of coordinate systems. In International Tables for - Crystallography (2016). Volume A, Space-group symmetry, edited - by M. Aroyo, 6th ed. ch 1.5. Chichester: Wiley. + _definition.id '_space_group_magn.transform_BNS_Pp' + _definition.update 2016-10-10 + _description.text ; -_type.contents Real -_type.container Matrix -_type.dimension '[4,4]' -loop_ - _description_example.case - _description_example.detail + This item specifies the transformation matrix Pp of the + basis vectors and origin of the current setting to those + of the Belov-Neronova-Smirnova setting presented in the + ISO-MAG tables. The basis vectors (a',b',c') of the BNS + setting are obtained as - [[1 0 0 0.25] - [0 1 0 0 ] - [0 0 1 0 ] - [0 0 0 1 ]] + (a',b',c',1) = Pp (a,b,c,1) -"Transformation from OG 5.6.24 C_P2' to BNS 4.12 P_C2_1" + where (a,b,c) are the current basis vectors. - [[0 0 1 0 ] - [0 -1 0 0.25] - [1 0 0 0 ] - [0 0 0 1 ]] + Ref: ISO-MAG tables of H.T. Stokes and B.J. Campbell at + http://iso.byu.edu -"Transformation from OG 8.7.44 C_Pm' to BNS 7.31 P_Ac" + Wondratschek, H., Aroyo, M. I., Souvignier, B. and Chapuis, G. + Transformation of coordinate systems. In International Tables for + Crystallography (2016). Volume A, Space-group symmetry, edited + by M. Aroyo, 6th ed. ch 1.5. Chichester: Wiley. +; + _name.category_id space_group_magn + _name.object_id transform_BNS_Pp + _type.purpose Describe + _type.source Assigned + _type.container Matrix + _type.dimension '[4,4]' + _type.contents Real -save_ + loop_ + _description_example.case + _description_example.detail + [ + [1 0 0 0.25] [0 1 0 0] [0 0 1 0] [0 0 0 1] + ] + "Transformation from OG 5.6.24 C_P2' to BNS 4.12 P_C2_1" + [ + [0 0 1 0] [0 -1 0 0.25] [1 0 0 0] [0 0 0 1] + ] + "Transformation from OG 8.7.44 C_Pm' to BNS 7.31 P_Ac" +save_ -save__space_group_magn.transform_BNS_Pp_abc +save_space_group_magn.transform_bns_pp_abc -_definition.id '_space_group_magn.transform_BNS_Pp_abc' -_name.category_id space_group_magn -_name.object_id transform_BNS_Pp_abc -_definition.update 2023-01-17 -_description.text + _definition.id '_space_group_magn.transform_BNS_Pp_abc' + _definition.update 2023-01-17 + _description.text ; - This item specifies the transformation (P,p) of the basis - vectors and origin of the current setting to those of the - Belov-Neronova-Smirnova setting presented in the ISO-MAG - tables. The basis vectors (a',b',c') of the BNS setting - are described as linear combinations of the current basis - vectors (a,b,c), and the origin shift (ox,oy,oz) is displayed - in the lattice coordinates of the current setting. The - Jones faithful notation and possible values are identical - to those of symCIF:_space_group.transform_Pp_abc, - except that the point and translational components are separated - by a semicolon. - - Analogous tags: symCIF:_space_group.transform_Pp_abc + This item specifies the transformation (P,p) of the basis + vectors and origin of the current setting to those of the + Belov-Neronova-Smirnova setting presented in the ISO-MAG + tables. The basis vectors (a',b',c') of the BNS setting + are described as linear combinations of the current basis + vectors (a,b,c), and the origin shift (ox,oy,oz) is displayed + in the lattice coordinates of the current setting. The + Jones faithful notation and possible values are identical + to those of symCIF:_space_group.transform_Pp_abc, + except that the point and translational components are separated + by a semicolon. - Ref: ISO-MAG tables of H.T. Stokes and B.J. Campbell at - http://iso.byu.edu + Analogous tags: symCIF:_space_group.transform_Pp_abc + + Ref: ISO-MAG tables of H.T. Stokes and B.J. Campbell at + http://iso.byu.edu ; -_type.contents Text -_type.container Single + _name.category_id space_group_magn + _name.object_id transform_BNS_Pp_abc + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Text save_ +save_space_group_magn.transform_og_pp -save__space_group_magn.transform_OG_Pp - -_definition.id '_space_group_magn.transform_OG_Pp' -_name.category_id space_group_magn -_name.object_id transform_OG_Pp -_definition.update 2016-10-10 -_description.text + _definition.id '_space_group_magn.transform_OG_Pp' + _definition.update 2016-10-10 + _description.text ; - This item specifies the transformation (P,p) of the basis - vectors and origin of the current setting to those of - the Opechowski-Guccione setting presented in the - Magnetic Group Tables of D.B. Litvin. The basis vectors - (a',b',c') of the OG setting are obtained as - - (a',b',c',1) = Pp (a,b,c,1) + This item specifies the transformation (P,p) of the basis + vectors and origin of the current setting to those of + the Opechowski-Guccione setting presented in the + Magnetic Group Tables of D.B. Litvin. The basis vectors + (a',b',c') of the OG setting are obtained as - where (a,b,c) are the current basis vectors. + (a',b',c',1) = Pp (a,b,c,1) - Ref: 'Magnetic Group Tables' by D.B. Litvin at - http://www.iucr.org/publ/978-0-9553602-2-0 + where (a,b,c) are the current basis vectors. - Wondratschek, H., Maroto, M. I., Souvignier, B. and Chapuis, G. - Transformation of coordinate systems. In International Tables for - Crystallography (2016). Volume A, Space-group symmetry, edited - by M. Aroyo, 6th ed. ch 1.5. Chichester: Wiley. + Ref: 'Magnetic Group Tables' by D.B. Litvin at + http://www.iucr.org/publ/978-0-9553602-2-0 + + Wondratschek, H., Maroto, M. I., Souvignier, B. and Chapuis, G. + Transformation of coordinate systems. In International Tables for + Crystallography (2016). Volume A, Space-group symmetry, edited + by M. Aroyo, 6th ed. ch 1.5. Chichester: Wiley. ; -_type.contents Real -_type.container Matrix -_type.dimension '[4,4]' + _name.category_id space_group_magn + _name.object_id transform_OG_Pp + _type.purpose Describe + _type.source Assigned + _type.container Matrix + _type.dimension '[4,4]' + _type.contents Real save_ +save_space_group_magn.transform_og_pp_abc -save__space_group_magn.transform_OG_Pp_abc - -_definition.id '_space_group_magn.transform_OG_Pp_abc' -_name.category_id space_group_magn -_name.object_id transform_OG_Pp_abc -_definition.update 2023-01-17 -_description.text + _definition.id '_space_group_magn.transform_OG_Pp_abc' + _definition.update 2023-01-17 + _description.text ; - This item specifies the transformation (P,p) of the basis - vectors and origin of the current setting to those of the - Opechowski-Guccione setting presented in the - Magnetic Group Tables of D.B. Litvin. The basis vectors - (a',b',c') of the reference setting are - described as linear combinations of the current basis vectors - (a,b,c), and the origin shift (ox,oy,oz) is displayed in the - lattice coordinates of the current setting. The Jones faithful - notation and possible values are identical to those of - symCIF:_space_group.transform_Pp_abc, except that the point and - translational components are separated by a semicolon. - - Analogous tags: symCIF:_space_group.transform_Pp_abc + This item specifies the transformation (P,p) of the basis + vectors and origin of the current setting to those of the + Opechowski-Guccione setting presented in the + Magnetic Group Tables of D.B. Litvin. The basis vectors + (a',b',c') of the reference setting are + described as linear combinations of the current basis vectors + (a,b,c), and the origin shift (ox,oy,oz) is displayed in the + lattice coordinates of the current setting. The Jones faithful + notation and possible values are identical to those of + symCIF:_space_group.transform_Pp_abc, except that the point and + translational components are separated by a semicolon. - Ref: 'Magnetic Group Tables' by D.B. Litvin at - http://www.iucr.org/publ/978-0-9553602-2-0 -; -_type.contents Text -_type.container Single + Analogous tags: symCIF:_space_group.transform_Pp_abc + Ref: 'Magnetic Group Tables' by D.B. Litvin at + http://www.iucr.org/publ/978-0-9553602-2-0 +; + _name.category_id space_group_magn + _name.object_id transform_OG_Pp_abc + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Text save_ +save_SPACE_GROUP_MAGN_SSG_TRANSFORMS -##################################### -## SPACE_GROUP_MAGN_SSG_TRANSFORMS ## -##################################### - -save_space_group_magn_ssg_transforms - -_definition.id space_group_magn_ssg_transforms -_name.category_id MAGNETIC -_name.object_id space_group_magn_ssg_transforms -_definition.update 2016-06-09 -_description.text + _definition.id SPACE_GROUP_MAGN_SSG_TRANSFORMS + _definition.scope Category + _definition.class Loop + _definition.update 2016-06-09 + _description.text ; - This loop provides a list of matrix transformations to one or - more settings of the magnetic superspace group, including - transformations to both standard and non-standard settings. A - transformation loop is particularly helpful for magnetic - superspace groups, which often have several reference settings - of interest. + This loop provides a list of matrix transformations to one or + more settings of the magnetic superspace group, including + transformations to both standard and non-standard settings. A + transformation loop is particularly helpful for magnetic + superspace groups, which often have several reference settings + of interest. - Analogous tags: transform loops have not yet been approved in - other dictionaries. + Analogous tags: transform loops have not yet been approved in + other dictionaries. ; -_definition.scope Category -_definition.class Loop -loop_ - _category_key.name '_space_group_magn_ssg_transforms.id' -save_ + _name.category_id MAGNETIC + _name.object_id SPACE_GROUP_MAGN_SSG_TRANSFORMS + _category_key.name '_space_group_magn_ssg_transforms.id' +save_ -save__space_group_magn_ssg_transforms.description +save_space_group_magn_ssg_transforms.description -_definition.id '_space_group_magn_ssg_transforms.description' -_name.category_id space_group_magn_ssg_transforms -_name.object_id description -_definition.update 2016-06-21 -_description.text + _definition.id '_space_group_magn_ssg_transforms.description' + _definition.update 2016-06-21 + _description.text ; - A string that describes the source of a reference setting for the - magnetic superspace group. The item - _space_group_magn_ssg_transforms.source should be used if the - reference source is one of those provided in that - definition. Otherwise, arbitrary free text can be used to describe - reference settings of interest, such as might appear in a specific - publication, though care should be taken to make the description - clear and unambiguous. + A string that describes the source of a reference setting for the + magnetic superspace group. The item + _space_group_magn_ssg_transforms.source should be used if the + reference source is one of those provided in that + definition. Otherwise, arbitrary free text can be used to describe + reference settings of interest, such as might appear in a specific + publication, though care should be taken to make the description + clear and unambiguous. ; -_type.contents Text -_type.container Single + _name.category_id space_group_magn_ssg_transforms + _name.object_id description + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Text save_ +save_space_group_magn_ssg_transforms.id -save__space_group_magn_ssg_transforms.id - -_definition.id '_space_group_magn_ssg_transforms.id' -_name.category_id space_group_magn_ssg_transforms -_name.object_id id -_definition.update 2016-06-09 -_description.text + _definition.id '_space_group_magn_ssg_transforms.id' + _definition.update 2016-06-09 + _description.text ; - An arbitrary identifier that uniquely labels each setting - transformation of interest in a looped list of superspace-group - transformations. Most commonly, a sequence of positive integers - is used for this identification. + An arbitrary identifier that uniquely labels each setting + transformation of interest in a looped list of superspace-group + transformations. Most commonly, a sequence of positive integers + is used for this identification. - Analogous tags: transform loops have not yet been approved in - other dictionaries. + Analogous tags: transform loops have not yet been approved in + other dictionaries. ; -_type.contents Text -_type.container Single -_type.purpose Key + _name.category_id space_group_magn_ssg_transforms + _name.object_id id + _type.purpose Key + _type.source Assigned + _type.container Single + _type.contents Text save_ +save_space_group_magn_ssg_transforms.pp_superspace -save__space_group_magn_ssg_transforms.Pp_superspace - -_definition.id '_space_group_magn_ssg_transforms.Pp_superspace' -_name.category_id space_group_magn_ssg_transforms -_name.object_id Pp_superspace -_definition.update 2016-06-09 -_description.text + _definition.id + '_space_group_magn_ssg_transforms.Pp_superspace' + _definition.update 2016-06-09 + _description.text ; - This item specifies the transformation (P,p) of the superspace - basis vectors from the current setting (a1,...,a(3+d)) to a - reference setting (a1',...,a(3+d)') given by - _space_group_magn_ssg_transforms.description. The origin shift - is presented in the unitless lattice coordinates of the current - setting. - The notation and usage are analogous to those of - _space_group.transform_Pp_abc, except that P now represents a - superspace point operation, that p now represents a superspace - translation, and that the point and translational components - are now separated with a semicolon. + This item specifies the transformation (P,p) of the superspace + basis vectors from the current setting (a1,...,a(3+d)) to a + reference setting (a1',...,a(3+d)') given by + _space_group_magn_ssg_transforms.description. The origin shift + is presented in the unitless lattice coordinates of the current + setting. + The notation and usage are analogous to those of + _space_group.transform_Pp_abc, except that P now represents a + superspace point operation, that p now represents a superspace + translation, and that the point and translational components + are now separated with a semicolon. - Analogous tags: symCIF:_space_group.transform_Pp_abc + Analogous tags: symCIF:_space_group.transform_Pp_abc ; -_type.contents Text -_type.container Single -_type.purpose Encode + _name.category_id space_group_magn_ssg_transforms + _name.object_id Pp_superspace + _type.purpose Encode + _type.source Assigned + _type.container Single + _type.contents Text -loop_ - _description_example.case - _description_example.detail - 'a1,a2,a3,a4,a5;0,0,0,0,0' "Identity transformation" - '-a2,a1,1/2a3,-a1+a5,-1/2a3+a4;1/4,-1/4,0,1/4,0' + loop_ + _description_example.case + _description_example.detail + a1,a2,a3,a4,a5;0,0,0,0,0 +; + Identity transformation ; - Transforms from a supercentered setting to the - ISO(3+d)D setting of - 65.2.43.64.m481.1 Cmmm(0,b1,1/2)000(1,0,g2)0s0. + -a2,a1,1/2a3,-a1+a5,-1/2a3+a4;1/4,-1/4,0,1/4,0 +; + Transforms from a supercentered setting to the + ISO(3+d)D setting of + 65.2.43.64.m481.1 Cmmm(0,b1,1/2)000(1,0,g2)0s0. ; save_ +save_space_group_magn_ssg_transforms.source -save__space_group_magn_ssg_transforms.source - -_definition.id '_space_group_magn_ssg_transforms.source' -_name.category_id space_group_magn_ssg_transforms -_name.object_id source -_definition.update 2016-06-21 -_description.text + _definition.id '_space_group_magn_ssg_transforms.source' + _definition.update 2016-06-21 + _description.text ; - A string that describes the source of a reference setting for the - magnetic superspace group. - If the reference source does not appear in the list below, use - _space_group_magn_ssg_transforms.description + A string that describes the source of a reference setting for the + magnetic superspace group. + If the reference source does not appear in the list below, use + _space_group_magn_ssg_transforms.description - Ref: 'Magnetic Group Tables' of D.B. Litvin at - http://www.iucr.org/publ/978-0-9553602-2-0. ISO-MAG tables of H.T. - Stokes and B.J. Campbell at http://iso.byu.edu. - ISO(3+d)D tables of H.T. Stokes and B.J. Campbell at http://iso.byu.edu. + Ref: 'Magnetic Group Tables' of D.B. Litvin at + http://www.iucr.org/publ/978-0-9553602-2-0. ISO-MAG tables of H.T. + Stokes and B.J. Campbell at http://iso.byu.edu. + ISO(3+d)D tables of H.T. Stokes and B.J. Campbell at http://iso.byu.edu. ; -_type.contents Text -_type.container Single -_type.purpose State - -loop_ - _enumeration_set.state - _enumeration_set.detail - 'ISO(3+d)D-MAG' + _name.category_id space_group_magn_ssg_transforms + _name.object_id source + _type.purpose State + _type.source Assigned + _type.container Single + _type.contents Text + _enumeration_set.state ISO(3+d)D-MAG + _enumeration_set.detail ; - This superspace transformation simultaneously takes the setting - of the basic magnetic space group (BMSG) to the setting of the - corresponding entry in the ISO-MAG tables, and takes the - setting of the derived non-magnetic superspace group (DNMSG) - to within a purely external operation of the setting of the - corresponding entry in the ISO(3+d)D tables. The external - components of this superspace transformation are those - that take the setting of the BMSG to the setting of the - corresponding entry in the ISO-MAG tables, while the internal - components are those of the transformation that takes the - setting of the DNMSG to the setting of the corresponding - superspace group in the ISO(3+d)D tables. Such a transformation - is unique for any setting of a magnetic superspace group. + This superspace transformation simultaneously takes the setting of the + basic magnetic space group (BMSG) to the setting of the corresponding entry + in the ISO-MAG tables, and takes the setting of the derived non-magnetic + superspace group (DNMSG) to within a purely external operation of the + setting of the corresponding entry in the ISO(3+d)D tables. The external + components of this superspace transformation are those that take the + setting of the BMSG to the setting of the corresponding entry in the + ISO-MAG tables, while the internal components are those of the + transformation that takes the setting of the DNMSG to the setting of the + corresponding superspace group in the ISO(3+d)D tables. Such a + transformation is unique for any setting of a magnetic superspace group. ; save_ +save_SPACE_GROUP_MAGN_TRANSFORMS - -################################# -## SPACE_GROUP_MAGN_TRANSFORMS ## -################################# - -save_space_group_magn_transforms - -_definition.id space_group_magn_transforms -_name.category_id MAGNETIC -_name.object_id space_group_magn_transforms -_definition.update 2016-06-09 -_description.text + _definition.id SPACE_GROUP_MAGN_TRANSFORMS + _definition.scope Category + _definition.class Loop + _definition.update 2016-06-09 + _description.text ; - This category provides a list of matrix transformations to multiple - settings of the magnetic space group, including transformations - to both standard and non-standard settings. A transformation - loop is particularly helpful for a magnetic space group, which - often have several reference settings of interest. + This category provides a list of matrix transformations to multiple + settings of the magnetic space group, including transformations + to both standard and non-standard settings. A transformation + loop is particularly helpful for a magnetic space group, which + often have several reference settings of interest. ; - -_definition.scope Category -_definition.class Loop - -loop_ - _category_key.name '_space_group_magn_transforms.id' -loop_ - _description_example.case - + _name.category_id MAGNETIC + _name.object_id SPACE_GROUP_MAGN_TRANSFORMS + _category_key.name '_space_group_magn_transforms.id' + _description_example.case ; -loop_ - _space_group_magn_transforms.id - _space_group_magn_transforms.Pp_abc - _space_group_magn_transforms.description - _space_group_magn_transforms.source - 1 'a,b,c;0,0,0' . "data_block_CURRENT" - 2 'a/2,b,c;0,0,0' "data_block_205763" . - 3 'a,b,c;0,0,0' . "BNS" - 4 'a/2,b,c;0,0,0' . "OG" - 5 'a/4,b,c;0,0,0' - "literature citation to a nuclear parent structure" . + loop_ + _space_group_magn_transforms.id + _space_group_magn_transforms.Pp_abc + _space_group_magn_transforms.description + _space_group_magn_transforms.source + 1 'a,b,c;0,0,0' . "data_block_CURRENT" + 2 'a/2,b,c;0,0,0' "data_block_205763" . + 3 'a,b,c;0,0,0' . "BNS" + 4 'a/2,b,c;0,0,0' . "OG" + 5 'a/4,b,c;0,0,0' + "literature citation to a nuclear parent structure" . ; -save_ +save_ -save__space_group_magn_transforms.description +save_space_group_magn_transforms.description -_definition.id '_space_group_magn_transforms.description' -_name.category_id space_group_magn_transforms -_name.object_id description -_definition.update 2016-06-09 -_description.text + _definition.id '_space_group_magn_transforms.description' + _definition.update 2016-06-09 + _description.text ; - A string that describes the source of the magnetic-space-group - reference setting indicated by the - _space_group_magn_transforms.Pp_abc tag. - _space_group_magn_transforms.source - should be used if the reference source is one of those provided in - that definition. - The value string "data_block_" refers to the setting - used in a separate data block named "blockname" within the same - file. Otherwise, - arbitrary free text can be used to describe other reference - settings of interest, such as might appear in a specific - publication, though care should be taken to make the description - clear and unambiguous. + A string that describes the source of the magnetic-space-group + reference setting indicated by the + _space_group_magn_transforms.Pp_abc tag. + _space_group_magn_transforms.source + should be used if the reference source is one of those provided in + that definition. + The value string "data_block_" refers to the setting + used in a separate data block named "blockname" within the same + file. Otherwise, + arbitrary free text can be used to describe other reference + settings of interest, such as might appear in a specific + publication, though care should be taken to make the description + clear and unambiguous. ; -_type.contents Text -_type.container Single + _name.category_id space_group_magn_transforms + _name.object_id description + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Text save_ +save_space_group_magn_transforms.id -save__space_group_magn_transforms.id - -_definition.id '_space_group_magn_transforms.id' -_name.category_id space_group_magn_transforms -_name.object_id id -_definition.update 2016-06-09 -_description.text + _definition.id '_space_group_magn_transforms.id' + _definition.update 2016-06-09 + _description.text ; - An arbitrary identifier that uniquely labels each setting - transformation of interest in a looped list of space-group - transformations. + An arbitrary identifier that uniquely labels each setting + transformation of interest in a looped list of space-group + transformations. - Analogous tags: transform loops have not been approved in other - dictionaries. + Analogous tags: transform loops have not been approved in other + dictionaries. ; -_type.contents Text -_type.container Single -_type.purpose Key + _name.category_id space_group_magn_transforms + _name.object_id id + _type.purpose Key + _type.source Assigned + _type.container Single + _type.contents Text save_ +save_space_group_magn_transforms.pp -save__space_group_magn_transforms.Pp - -_definition.id '_space_group_magn_transforms.Pp' -_name.category_id space_group_magn_transforms -_name.object_id Pp -_definition.update 2016-06-23 -_description.text + _definition.id '_space_group_magn_transforms.Pp' + _definition.update 2016-06-23 + _description.text ; - This item specifies the transformation (P,p) of the basis - vectors and origin in the current setting of the CIF file - to the reference setting described by the - _space_group_magn_transforms.description or - _space_group_magn_transforms.source tags, and should not - be used without this description. The basis vectors - (a',b',c') of the reference setting are obtained as - - (a',b',c',1) = Pp (a,b,c,1) + This item specifies the transformation (P,p) of the basis + vectors and origin in the current setting of the CIF file + to the reference setting described by the + _space_group_magn_transforms.description or + _space_group_magn_transforms.source tags, and should not + be used without this description. The basis vectors + (a',b',c') of the reference setting are obtained as - where (a,b,c) are the current basis vectors. + (a',b',c',1) = Pp (a,b,c,1) - Ref: Wondratschek, H., Maroto, M. I., Souvignier, B. and Chapuis, G. - Transformation of coordinate systems. In International Tables for - Crystallography (2016). Volume A, Space-group symmetry, edited - by M. Aroyo, 6th ed. ch 1.5. Chichester: Wiley. + where (a,b,c) are the current basis vectors. + + Ref: Wondratschek, H., Maroto, M. I., Souvignier, B. and Chapuis, G. + Transformation of coordinate systems. In International Tables for + Crystallography (2016). Volume A, Space-group symmetry, edited + by M. Aroyo, 6th ed. ch 1.5. Chichester: Wiley. ; -_type.contents Real -_type.container Matrix -_type.dimension '[4,4]' + _name.category_id space_group_magn_transforms + _name.object_id Pp + _type.purpose Describe + _type.source Assigned + _type.container Matrix + _type.dimension '[4,4]' + _type.contents Real save_ +save_space_group_magn_transforms.pp_abc -save__space_group_magn_transforms.Pp_abc - -_definition.id '_space_group_magn_transforms.Pp_abc' -_name.category_id space_group_magn_transforms -_name.object_id Pp_abc -_definition.update 2023-01-17 -_description.text + _definition.id '_space_group_magn_transforms.Pp_abc' + _definition.update 2023-01-17 + _description.text ; - This item specifies the transformation (P,p) of the basis - vectors and origin in the current setting of the CIF file - to the reference setting described by the - _space_group_magn_transforms.description or - _space_group_magn_transforms.source tags, and should not - be used without this description. The basis vectors - (a',b',c') of the reference setting are described as linear - combinations of the current basis vectors (a,b,c), and the origin - shift (ox,oy,oz) is displayed in the lattice coordinates of the - current setting. The Jones faithful notation and possible values - are identical to those of symCIF:_space_group_transform_Pp_abc, - except that the point and translational components are separated - by a semicolon. - - Analogous tags: symCIF:_space_group.transform_Pp_abc -; -_type.contents Text -_type.container Single + This item specifies the transformation (P,p) of the basis + vectors and origin in the current setting of the CIF file + to the reference setting described by the + _space_group_magn_transforms.description or + _space_group_magn_transforms.source tags, and should not + be used without this description. The basis vectors + (a',b',c') of the reference setting are described as linear + combinations of the current basis vectors (a,b,c), and the origin + shift (ox,oy,oz) is displayed in the lattice coordinates of the + current setting. The Jones faithful notation and possible values + are identical to those of symCIF:_space_group_transform_Pp_abc, + except that the point and translational components are separated + by a semicolon. + Analogous tags: symCIF:_space_group.transform_Pp_abc +; + _name.category_id space_group_magn_transforms + _name.object_id Pp_abc + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Text save_ +save_space_group_magn_transforms.source -save__space_group_magn_transforms.source - -_definition.id '_space_group_magn_transforms.source' -_name.category_id space_group_magn_transforms -_name.object_id source -_definition.update 2016-06-22 -_description.text + _definition.id '_space_group_magn_transforms.source' + _definition.update 2016-06-22 + _description.text ; - A string that describes the source of the magnetic space group - reference indicated by the _space_group_magnetic_transforms.Pp_abc - tag. If the reference source does not appear in the list below, use - _space_group_magn_transforms.description + A string that describes the source of the magnetic space group + reference indicated by the _space_group_magnetic_transforms.Pp_abc + tag. If the reference source does not appear in the list below, use + _space_group_magn_transforms.description - Ref: 'Magnetic Group Tables' of D.B. Litvin at - http://www.iucr.org/publ/978-0-9553602-2-0. ISO-MAG tables of H.T. - Stokes and B.J. Campbell at http://iso.byu.edu. ISO(3+d)D tables - of H.T. Stokes and B.J. Campbell at http://iso.byu.edu. + Ref: 'Magnetic Group Tables' of D.B. Litvin at + http://www.iucr.org/publ/978-0-9553602-2-0. ISO-MAG tables of H.T. + Stokes and B.J. Campbell at http://iso.byu.edu. ISO(3+d)D tables + of H.T. Stokes and B.J. Campbell at http://iso.byu.edu. ; -_type.contents Text -_type.container Single -_type.purpose State + _name.category_id space_group_magn_transforms + _name.object_id source + _type.purpose State + _type.source Assigned + _type.container Single + _type.contents Text -loop_ - _enumeration_set.state - _enumeration_set.detail - "data_block_CURRENT" -; - The setting used in the current data block. Obviously, the basis - transformation to this setting is the identity. The ability to - reference the current setting can be useful when communicating - the same magnetic propagation vector in multiple settings. -; - 'BNS' -; - The Belov-Neronova-Smirnova group setting presented in the ISO-MAG tables. -; - 'OG' -; - The Opechowski-Guccione group setting presented in the - Magnetic Group Tables of D.B. Litvin. -; - -save_ - -###################################### -## SPACE_GROUP_SYMOP_MAGN_CENTERING ## -###################################### - -save_space_group_symop_magn_centering - -_definition.id space_group_symop_magn_centering -_name.category_id MAGNETIC -_name.object_id space_group_symop_magn_centering -_definition.update 2016-05-24 -_description.text -; - This loop provides a list of centering or anti-centering - translation in a BNS-supercell description of a magnetic space - group. - Keeping the centering and anti-centering translations in a - separate loop leaves only representative point operations in the - main SPACE_GROUP_SYMOP_MAGN_OPERATION loop. The direct sum of - the two loops produces the full set of representative operations - of the magnetic space group. This centering loop is optional, so - that it is always possible to include all of the symmetry - operations in the main loop. - When this centering loop is employed, the representative point - operations in the main SPACE_GROUP_SYMOP_MAGN_OPERATION loop may - not form a closed subgroup, but instead generate some of the - fractional translations of the centering loop. Despite this - annoyance, a separate centering loop is important because - magnetic structures tend to have a relatively large number of - centering and anti-centering translations, which can make the - resulting list of operators very long and unintuitive, especially - when working in non-standard settings. - One could argue that anti-centering operations belong in the main - representative- point-operation loop since they are not actually - translations of the magnetic lattice. In fact, a pure time - reversal is a generator of the magnetic point group of a type-4 - magnetic space group. Nevertheless, this centering loop is - defined to include the anti-centerings due to the common - practice of referring to a "black and white" lattice of - centerings and anti-centerings. -; -_definition.scope Category -_definition.class Loop -loop_ - _category_key.name - '_space_group_symop_magn_centering.id' -loop_ + loop_ + _enumeration_set.state + _enumeration_set.detail + 'data_block_CURRENT' +; + The setting used in the current data block. Obviously, the basis + transformation to this setting is the identity. The ability to + reference the current setting can be useful when communicating the + same magnetic propagation vector in multiple settings. +; + 'BNS' +; + The Belov-Neronova-Smirnova group setting presented in the ISO-MAG + tables. +; + 'OG' +; + The Opechowski-Guccione group setting presented in the Magnetic Group + Tables of D.B. Litvin. +; + +save_ + +save_SPACE_GROUP_SYMOP_MAGN_CENTERING + + _definition.id SPACE_GROUP_SYMOP_MAGN_CENTERING + _definition.scope Category + _definition.class Loop + _definition.update 2016-05-24 + _description.text +; + This loop provides a list of centering or anti-centering + translation in a BNS-supercell description of a magnetic space + group. + Keeping the centering and anti-centering translations in a + separate loop leaves only representative point operations in the + main SPACE_GROUP_SYMOP_MAGN_OPERATION loop. The direct sum of + the two loops produces the full set of representative operations + of the magnetic space group. This centering loop is optional, so + that it is always possible to include all of the symmetry + operations in the main loop. + When this centering loop is employed, the representative point + operations in the main SPACE_GROUP_SYMOP_MAGN_OPERATION loop may + not form a closed subgroup, but instead generate some of the + fractional translations of the centering loop. Despite this + annoyance, a separate centering loop is important because + magnetic structures tend to have a relatively large number of + centering and anti-centering translations, which can make the + resulting list of operators very long and unintuitive, especially + when working in non-standard settings. + One could argue that anti-centering operations belong in the main + representative- point-operation loop since they are not actually + translations of the magnetic lattice. In fact, a pure time + reversal is a generator of the magnetic point group of a type-4 + magnetic space group. Nevertheless, this centering loop is + defined to include the anti-centerings due to the common + practice of referring to a "black and white" lattice of + centerings and anti-centerings. +; + _name.category_id MAGNETIC + _name.object_id SPACE_GROUP_SYMOP_MAGN_CENTERING + _category_key.name '_space_group_symop_magn_centering.id' _description_example.case ; loop_ @@ -3608,561 +3523,552 @@ loop_ 2 'x+1/2,y+1/2,z,-1' 'a time-reversed (1/2,1/2,0) translation' ; -save_ +save_ -save__space_group_symop_magn_centering.description - -_definition.id '_space_group_symop_magn_centering.description' -_name.category_id space_group_symop_magn_centering -_name.object_id description -_definition.update 2016-05-24 +save_space_group_symop_magn_centering.description -_description.text + _definition.id + '_space_group_symop_magn_centering.description' + _definition.update 2016-05-24 + _description.text ; - An optional free text description of a particular centering or - anti-centering translation in the BNS-supercell description of a - magnetic space group. + An optional free text description of a particular centering or + anti-centering translation in the BNS-supercell description of a + magnetic space group. +; + _name.category_id space_group_symop_magn_centering + _name.object_id description + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Text + _description_example.case +; + "(1|1/2,1/2,0)'", "(1'|1/2,1/2,0)" or + "(1/2,1/2,0) anti-centering translation" + would adequately describe + "x+1/2,y+1/2,z,-1" ; -_type.contents Text -_type.container Single - -loop_ - _description_example.case - -; "(1|1/2,1/2,0)'", "(1'|1/2,1/2,0)" or - "(1/2,1/2,0) anti-centering translation" - would adequately describe - "x+1/2,y+1/2,z,-1" -; save_ +save_space_group_symop_magn_centering.id -save__space_group_symop_magn_centering.id - -_definition.id '_space_group_symop_magn_centering.id' -_name.category_id space_group_symop_magn_centering -_name.object_id id -_definition.update 2016-05-24 -_description.text + _definition.id '_space_group_symop_magn_centering.id' + _definition.update 2016-05-24 + _description.text ; - An arbitrary identifier that uniquely labels each centering or - anti-centering translation in a BNS-supercell description of a - magnetic space group. Most commonly, a sequence of positive - integers is used for this identification. + An arbitrary identifier that uniquely labels each centering or + anti-centering translation in a BNS-supercell description of a + magnetic space group. Most commonly, a sequence of positive + integers is used for this identification. ; -_type.contents Text -_type.container Single -_type.purpose Key + _name.category_id space_group_symop_magn_centering + _name.object_id id + _type.purpose Key + _type.source Assigned + _type.container Single + _type.contents Text save_ +save_space_group_symop_magn_centering.xyz -save__space_group_symop_magn_centering.xyz - -_definition.id '_space_group_symop_magn_centering.xyz' -_name.category_id space_group_symop_magn_centering -_name.object_id xyz -_definition.update 2016-05-24 -_description.text + _definition.id '_space_group_symop_magn_centering.xyz' + _definition.update 2016-05-24 + _description.text ; - A parsable string giving one of the centering or anti-centering - translations in the BNS-supercell description of a magnetic space - group in algebraic form. The form of such a string is identical - to that expected for _space_group_symop_magn_operation.xyz, - except that the rotational part of a translation must always be - the identity element. + A parsable string giving one of the centering or anti-centering + translations in the BNS-supercell description of a magnetic space + group in algebraic form. The form of such a string is identical + to that expected for _space_group_symop_magn_operation.xyz, + except that the rotational part of a translation must always be + the identity element. ; -_type.contents Text -_type.container Single -_type.purpose Encode -save_ - + _name.category_id space_group_symop_magn_centering + _name.object_id xyz + _type.purpose Encode + _type.source Assigned + _type.container Single + _type.contents Text -######################################### -## SPACE_GROUP_SYMOP_MAGN_OG_CENTERING ## -######################################### +save_ -save_space_group_symop_magn_OG_centering +save_SPACE_GROUP_SYMOP_MAGN_OG_CENTERING -_definition.id space_group_symop_magn_OG_centering -_name.category_id MAGNETIC -_name.object_id space_group_symop_magn_OG_centering -_definition.update 2016-05-24 -_description.text + _definition.id SPACE_GROUP_SYMOP_MAGN_OG_CENTERING + _definition.scope Category + _definition.class Loop + _definition.update 2016-05-24 + _description.text ; - This loop provides a list of centering translations in an - OG(k)-supercell description of a magnetic space group. - For an OG(k)-supercell description, this loop is mandatory and - entirely distinct from the optional - SPACE_GROUP_SYMOP_MAGN_CENTERING loop used to simplify the - presentation of a BNS-supercell description. - An integer translation in an OG setting of a type-4 magnetic - space group may have a time-reversal component of -1, in which - case it is actually an anti-translation vector rather than a lattice - vector. This loop should include all centering and anti-centering - translations, but does not include the time-reversal components, - which are instead determined - using the value of the _space_group_magn.OG_wavevector_kxkykz tag. - Because the centering translations are listed in a separate loop - in the OG(k) description, - only representative point operations remain in the main - SPACE_GROUP_SYMOP_MAGN_OPERATION loop. + This loop provides a list of centering translations in an + OG(k)-supercell description of a magnetic space group. + For an OG(k)-supercell description, this loop is mandatory and + entirely distinct from the optional + SPACE_GROUP_SYMOP_MAGN_CENTERING loop used to simplify the + presentation of a BNS-supercell description. + An integer translation in an OG setting of a type-4 magnetic + space group may have a time-reversal component of -1, in which + case it is actually an anti-translation vector rather than a lattice + vector. This loop should include all centering and anti-centering + translations, but does not include the time-reversal components, + which are instead determined + using the value of the _space_group_magn.OG_wavevector_kxkykz tag. + Because the centering translations are listed in a separate loop + in the OG(k) description, + only representative point operations remain in the main + SPACE_GROUP_SYMOP_MAGN_OPERATION loop. ; -_definition.scope Category -_definition.class Loop -loop_ - _category_key.name - '_space_group_symop_magn_OG_centering.id' -save_ + _name.category_id MAGNETIC + _name.object_id SPACE_GROUP_SYMOP_MAGN_OG_CENTERING + _category_key.name '_space_group_symop_magn_OG_centering.id' +save_ -save__space_group_symop_magn_OG_centering.description +save_space_group_symop_magn_og_centering.description -_definition.id '_space_group_symop_magn_OG_centering.description' -_name.category_id space_group_symop_magn_OG_centering -_name.object_id description -_definition.update 2016-05-24 -_description.text + _definition.id + '_space_group_symop_magn_OG_centering.description' + _definition.update 2016-05-24 + _description.text ; - An optional free-text description of a particular centering - operation from the OG(k)-supercell description of a magnetic - space group, without the time-reversal component. + An optional free-text description of a particular centering + operation from the OG(k)-supercell description of a magnetic + space group, without the time-reversal component. - Analogous tags: centering loops have not been approved for other - dictionaries. + Analogous tags: centering loops have not been approved for other + dictionaries. ; -_type.contents Text -_type.container Single - -loop_ - _description_example.case - _description_example.detail - "(1/2,1/2,0)" 'Adequately describes x+1/2,y+1/2,z' + _name.category_id space_group_symop_magn_OG_centering + _name.object_id description + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Text + _description_example.case (1/2,1/2,0) + _description_example.detail 'Adequately describes x+1/2,y+1/2,z' save_ +save_space_group_symop_magn_og_centering.id -save__space_group_symop_magn_OG_centering.id - -_definition.id '_space_group_symop_magn_OG_centering.id' -_name.category_id space_group_symop_magn_OG_centering -_name.object_id id -_definition.update 2016-05-24 -_description.text + _definition.id '_space_group_symop_magn_OG_centering.id' + _definition.update 2016-05-24 + _description.text ; - An arbitrary loop identifier that uniquely labels each centering - translation in an OG(k)-supercell description of a magnetic space - group. Most commonly, a sequence of positive integers is used for - this identification. + An arbitrary loop identifier that uniquely labels each centering + translation in an OG(k)-supercell description of a magnetic space + group. Most commonly, a sequence of positive integers is used for + this identification. - Analogous tags: centering loops have not been approved for other - dictionaries. + Analogous tags: centering loops have not been approved for other + dictionaries. ; -_type.contents Text -_type.container Single -_type.purpose Key + _name.category_id space_group_symop_magn_OG_centering + _name.object_id id + _type.purpose Key + _type.source Assigned + _type.container Single + _type.contents Text save_ +save_space_group_symop_magn_og_centering.xyz -save__space_group_symop_magn_OG_centering.xyz - -_definition.id '_space_group_symop_magn_OG_centering.xyz' -_name.category_id space_group_symop_magn_OG_centering -_name.object_id xyz -_definition.update 2016-05-24 -_description.text + _definition.id '_space_group_symop_magn_OG_centering.xyz' + _definition.update 2016-05-24 + _description.text ; - A parsable string giving one of the centering operations of the - OG(k)-supercell description of a magnetic space group in - algebraic form. The form of such a string is identical to that - expected for _space_group_symop_operation.xyz, except that the - rotational part of a translation must always be the identity - element. The magnetic component of the centering vector is not - given in the value of this tag, but should instead be separately - established using the value of the - _space_group_magn.OG_wavevector_kxkykz tag. + A parsable string giving one of the centering operations of the + OG(k)-supercell description of a magnetic space group in + algebraic form. The form of such a string is identical to that + expected for _space_group_symop_operation.xyz, except that the + rotational part of a translation must always be the identity + element. The magnetic component of the centering vector is not + given in the value of this tag, but should instead be separately + established using the value of the + _space_group_magn.OG_wavevector_kxkykz tag. ; -_type.contents Text -_type.container Single -_type.purpose Encode -loop_ - _description_example.case - _description_example.detail - "x+1/2,y+1/2,z" "a centering translation of (1/2,1/2,0)" + _name.category_id space_group_symop_magn_OG_centering + _name.object_id xyz + _type.purpose Encode + _type.source Assigned + _type.container Single + _type.contents Text + _description_example.case x+1/2,y+1/2,z + _description_example.detail 'a centering translation of (1/2,1/2,0)' save_ -######################################### -## SPACE_GROUP_SYMOP_MAGN_OG_CENTERING ## -######################################### - -save_space_group_symop_magn_operation +save_SPACE_GROUP_SYMOP_MAGN_OPERATION -_definition.id space_group_symop_magn_operation -_name.category_id MAGNETIC -_name.object_id space_group_symop_magn_operation -_definition.update 2016-05-24 -_description.text + _definition.id SPACE_GROUP_SYMOP_MAGN_OPERATION + _definition.scope Category + _definition.class Loop + _definition.update 2016-05-24 + _description.text ; - A list of magnetic space-group symmetry operations. + A list of magnetic space-group symmetry operations. ; -_definition.scope Category -_definition.class Loop -loop_ - _category_key.name - '_space_group_symop_magn_operation.id' + _name.category_id MAGNETIC + _name.object_id SPACE_GROUP_SYMOP_MAGN_OPERATION + _category_key.name '_space_group_symop_magn_operation.id' save_ +save_space_group_symop_magn_operation.description -save__space_group_symop_magn_operation.description - -_definition.id '_space_group_symop_magn_operation.description' -_name.category_id space_group_symop_magn_operation -_name.object_id description -_definition.update 2016-05-24 -_description.text + _definition.id + '_space_group_symop_magn_operation.description' + _definition.update 2016-05-24 + _description.text ; - The description of a particular symmetry operation of - the magnetic space group, which can be presented in - either the geometric notation presented in the - International Tables for Crystallography (2006), - Volume A, section 11.1.2, or the Seitz notation as - presented in Acta Cryst. (2014), A70, 300-302. - This tag is intended for use with the BNS-supercell - description of a magnetic structure. + The description of a particular symmetry operation of + the magnetic space group, which can be presented in + either the geometric notation presented in the + International Tables for Crystallography (2006), + Volume A, section 11.1.2, or the Seitz notation as + presented in Acta Cryst. (2014), A70, 300-302. + This tag is intended for use with the BNS-supercell + description of a magnetic structure. - Analogous tags: symCIF:_space_group_symop.operation_description + Analogous tags: symCIF:_space_group_symop.operation_description - Ref: 'Magnetic Group Tables' by D.B. Litvin at - http://www.iucr.org/publ/978-0-9553602-2-0. ISO-MAG tables of H.T. - Stokes and B.J. Campbell at http://iso.byu.edu. + Ref: 'Magnetic Group Tables' by D.B. Litvin at + http://www.iucr.org/publ/978-0-9553602-2-0. ISO-MAG tables of H.T. + Stokes and B.J. Campbell at http://iso.byu.edu. ; -_type.contents Text -_type.container Single + _name.category_id space_group_symop_magn_operation + _name.object_id description + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Text save_ +save_space_group_symop_magn_operation.id -save__space_group_symop_magn_operation.id - -_definition.id '_space_group_symop_magn_operation.id' -_name.category_id space_group_symop_magn_operation -_name.object_id id -_definition.update 2016-05-24 -loop_ - _alias.definition_id - _alias.deprecation_date - '_space_group_symop_magn.id' 2016-05-24 - -_description.text + _definition.id '_space_group_symop_magn_operation.id' + _alias.definition_id '_space_group_symop_magn.id' + _alias.deprecation_date 2016-05-24 + _definition.update 2016-05-24 + _description.text ; - An arbitrary identifier that uniquely labels each symmetry - operation in a looped list of magnetic space-group symmetry - operations. Most commonly, a sequence of positive integers is - used for this identification. - The _space_group_symop_magn.id alias provides backwards - compatibility with the established magCIF prototype. + An arbitrary identifier that uniquely labels each symmetry + operation in a looped list of magnetic space-group symmetry + operations. Most commonly, a sequence of positive integers is + used for this identification. + The _space_group_symop_magn.id alias provides backwards + compatibility with the established magCIF prototype. ; -_type.contents Text -_type.container Single -_type.purpose Key + _name.category_id space_group_symop_magn_operation + _name.object_id id + _type.purpose Key + _type.source Assigned + _type.container Single + _type.contents Text save_ +save_space_group_symop_magn_operation.xyz -save__space_group_symop_magn_operation.xyz - -_definition.id '_space_group_symop_magn_operation.xyz' -_name.category_id space_group_symop_magn_operation -_name.object_id xyz -_definition.update 2016-05-24 -_description.text + _definition.id '_space_group_symop_magn_operation.xyz' + _definition.update 2016-05-24 + _description.text ; - A parsable string giving one of the symmetry operations of the - magnetic space group in algebraic form. The analogy between - parsable labels for magnetic and non-magnetic symmetry operations - is perfect except for the fact that a magnetic symop label ends - with an additional piece of information ("-1" or "+1") indicating - that the operation is or is not time-reversed, respectively. - This tag is intended for use with the BNS-supercell description - of a magnetic structure. + A parsable string giving one of the symmetry operations of the + magnetic space group in algebraic form. The analogy between + parsable labels for magnetic and non-magnetic symmetry operations + is perfect except for the fact that a magnetic symop label ends + with an additional piece of information ("-1" or "+1") indicating + that the operation is or is not time-reversed, respectively. + This tag is intended for use with the BNS-supercell description + of a magnetic structure. - Analogous tags: symCIF:_space_group_symop.operation_xyz + Analogous tags: symCIF:_space_group_symop.operation_xyz + + Ref: 'Magnetic Group Tables' by D.B. Litvin at + http://www.iucr.org/publ/978-0-9553602-2-0. ISO-MAG tables of H.T. + Stokes and B.J. Campbell at http://iso.byu.edu. +; + _name.category_id space_group_symop_magn_operation + _name.object_id xyz + _type.purpose Encode + _type.source Assigned + _type.container Single + _type.contents Text - Ref: 'Magnetic Group Tables' by D.B. Litvin at - http://www.iucr.org/publ/978-0-9553602-2-0. ISO-MAG tables of H.T. - Stokes and B.J. Campbell at http://iso.byu.edu. + loop_ + _description_example.case + _description_example.detail + x+1/2,y+1/2,z,-1 +; + a time-reversed (1/2,1/2,0) translation, + i.e. anti-centering vector +; + -y,x,z+1/2,-1 +; + a time-reversed 4_2 screw along (00z). ; -_type.contents Text -_type.container Single -_type.purpose Encode -loop_ - _description_example.case - _description_example.detail - "x+1/2,y+1/2,z,-1" -; a time-reversed (1/2,1/2,0) translation, - i.e. anti-centering vector + -y,x,z+1/2,+1 +; + a non-time-reversed 4_2 screw along (00z). ; - "-y,x,z+1/2,-1" "a time-reversed 4_2 screw along (00z)." - "-y,x,z+1/2,+1" "a non-time-reversed 4_2 screw along (00z)." save_ -########################################## -## SPACE_GROUP_SYMOP_MAGN_SSG_CENTERING ## -########################################## - -save_space_group_symop_magn_ssg_centering +save_SPACE_GROUP_SYMOP_MAGN_SSG_CENTERING -_definition.id space_group_symop_magn_ssg_centering -_name.category_id MAGNETIC -_name.object_id space_group_symop_magn_ssg_centering -_definition.update 2016-05-24 -_description.text + _definition.id SPACE_GROUP_SYMOP_MAGN_SSG_CENTERING + _definition.scope Category + _definition.class Loop + _definition.update 2016-05-24 + _description.text ; - This loop provides a list of the centering and anti-centering - translations of a magnetic superspace-group. + This loop provides a list of the centering and anti-centering + translations of a magnetic superspace-group. ; -_definition.scope Category -_definition.class Loop -loop_ - _category_key.name - '_space_group_symop_magn_ssg_centering.id' - -save_ - - -save__space_group_symop_magn_ssg_centering.algebraic - -_definition.id '_space_group_symop_magn_ssg_centering.algebraic' -_name.category_id space_group_symop_magn_ssg_centering -_name.object_id algebraic -_definition.update 2016-05-24 -_description.text -; - A parsable string giving one of the centering or anti-centering - operations of the magnetic superspace group in algebraic form. - The form of such a string is identical to that expected for - _space_group_symop_magn_ssg_operation.algebraic, except that the - rotational part of a translation must always be the identity - element. See the description of - _space_group_symop_magn_centering.id for more information about - centering loops. This tag is intended for use with the BNS - description of the magnetic basic cell. -; -_type.contents Text -_type.container Single -_type.purpose Encode -loop_ - _description_example.case - _description_example.detail - 'x1,x2,x3,x4,x5,+1' 'the identity element in (3+2)D' - - 'x1,x2,x3,x4+1/2,-1' -; a time-reversed superspace translation - in (3+1)D based on a simple 180-degree - phase shift of a single modulation - vector' -; - 'x1+1/2,x2+1/2,x3+1/2,x4,+1' -; a non-time-reversed external - body-center translation in (3+1)D -; - - 'x1+1/2,x2,x3,x4,x5,x6+3/2,-1' -; a time-reversed superspace translation - in (3+3)D that combines internal and - external shifts -; -save_ - - -save__space_group_symop_magn_ssg_centering.id - -_definition.id '_space_group_symop_magn_ssg_centering.id' -_name.category_id space_group_symop_magn_ssg_centering -_name.object_id id -_definition.update 2016-05-24 -_description.text -; - An arbitrary identifier that uniquely labels each centering or - anti-centering translations in a looped list of magnetic - superspace-group symmetry operations. Most commonly, a sequence - of positive integers is used for this identification. This tag - is intended for use with the BNS description of the magnetic - basic cell. - Analogous to the case of magnetic space groups, the magCIF - dictionary allows the subgroup of time-reversed and - non-time-reversed fractional translations of a magnetic superspace group - to be split off into a separate loop. See the description of - _space_group_symop_magn_centering.id for more information about - centering loops. -; -_type.contents Text -_type.container Single -_type.purpose Key - -save_ - -########################################## -## SPACE_GROUP_SYMOP_MAGN_SSG_OPERATION ## -########################################## - -save_space_group_symop_magn_ssg_operation - -_definition.id space_group_symop_magn_ssg_operation -_name.category_id MAGNETIC -_name.object_id space_group_symop_magn_ssg_operation -_definition.update 2016-05-24 -_description.text -; - A looped list of magnetic superspace-group symmetry operations. - - Analogous tags: msCIF:_space_group_symop.ssg_* -; -_definition.scope Category -_definition.class Loop -loop_ - _category_key.name - '_space_group_symop_magn_ssg_operation.id' + _name.category_id MAGNETIC + _name.object_id SPACE_GROUP_SYMOP_MAGN_SSG_CENTERING + _category_key.name '_space_group_symop_magn_ssg_centering.id' + save_ +save_space_group_symop_magn_ssg_centering.algebraic -save__space_group_symop_magn_ssg_operation.algebraic + _definition.id + '_space_group_symop_magn_ssg_centering.algebraic' + _definition.update 2016-05-24 + _description.text +; + A parsable string giving one of the centering or anti-centering + operations of the magnetic superspace group in algebraic form. + The form of such a string is identical to that expected for + _space_group_symop_magn_ssg_operation.algebraic, except that the + rotational part of a translation must always be the identity + element. See the description of + _space_group_symop_magn_centering.id for more information about + centering loops. This tag is intended for use with the BNS + description of the magnetic basic cell. +; + _name.category_id space_group_symop_magn_ssg_centering + _name.object_id algebraic + _type.purpose Encode + _type.source Assigned + _type.container Single + _type.contents Text -_definition.id '_space_group_symop_magn_ssg_operation.algebraic' -_name.category_id space_group_symop_magn_ssg_operation -_name.object_id algebraic -_definition.update 2016-05-24 -_description.text + loop_ + _description_example.case + _description_example.detail + x1,x2,x3,x4,x5,+1 ; - A parsable string giving one of the symmetry operations of the - magnetic superspace group in algebraic form. The analogy - between parsable labels for magnetic and non-magnetic symmetry - operations is perfect except for the fact that a magnetic symop - label ends with an additional piece of information ("-1" or "+1") - indicating that the operation is or is not time-reversed, - respectively. This tag is intended for use with the BNS - description of the magnetic basic cell. + the identity element in (3+2)D +; + x1,x2,x3,x4+1/2,-1 +; + a time-reversed superspace translation + in (3+1)D based on a simple 180-degree + phase shift of a single modulation + vector' +; + x1+1/2,x2+1/2,x3+1/2,x4,+1 +; + a non-time-reversed external + body-center translation in (3+1)D +; + x1+1/2,x2,x3,x4,x5,x6+3/2,-1 +; + a time-reversed superspace translation + in (3+3)D that combines internal and + external shifts +; + +save_ + +save_space_group_symop_magn_ssg_centering.id - Analogous tags: msCIF:_space_group_symop.ssg_operation_algebraic + _definition.id '_space_group_symop_magn_ssg_centering.id' + _definition.update 2016-05-24 + _description.text ; -_type.contents Text -_type.container Single -_type.purpose Describe -loop_ - _description_example.case - _description_example.detail - "x1,x2,x3,x4,x5,x6,+1" "the identity element in (3+3)D." - 'x1,x2,x3,x4+1/2,-1' -; a superspace anti-centering translation - based on a simple 180-degree phase shift - of a single modulation vector -; - 'x1+1/2,x2+1/2,-x3,-x4,-1' -; a time-reversed n-glide perpendicular to - a z-axis modulation -; - 'x1-x2,x1,x3+1/3,x4-1/6,x5,+1' -; a non-time-reversed 6_2 screw axis with - phase shift along a pair of z-axis - modulations + An arbitrary identifier that uniquely labels each centering or + anti-centering translations in a looped list of magnetic + superspace-group symmetry operations. Most commonly, a sequence + of positive integers is used for this identification. This tag + is intended for use with the BNS description of the magnetic + basic cell. + Analogous to the case of magnetic space groups, the magCIF + dictionary allows the subgroup of time-reversed and + non-time-reversed fractional translations of a magnetic superspace group + to be split off into a separate loop. See the description of + _space_group_symop_magn_centering.id for more information about + centering loops. ; + _name.category_id space_group_symop_magn_ssg_centering + _name.object_id id + _type.purpose Key + _type.source Assigned + _type.container Single + _type.contents Text + save_ +save_SPACE_GROUP_SYMOP_MAGN_SSG_OPERATION + + _definition.id SPACE_GROUP_SYMOP_MAGN_SSG_OPERATION + _definition.scope Category + _definition.class Loop + _definition.update 2016-05-24 + _description.text +; + A looped list of magnetic superspace-group symmetry operations. + + Analogous tags: msCIF:_space_group_symop.ssg_* +; + _name.category_id MAGNETIC + _name.object_id SPACE_GROUP_SYMOP_MAGN_SSG_OPERATION + _category_key.name '_space_group_symop_magn_ssg_operation.id' + +save_ -save__space_group_symop_magn_ssg_operation.id +save_space_group_symop_magn_ssg_operation.algebraic -_definition.id '_space_group_symop_magn_ssg_operation.id' -_name.category_id space_group_symop_magn_ssg_operation -_name.object_id id -_definition.update 2016-05-24 -loop_ - _alias.definition_id - _alias.deprecation_date - '_space_group_symop_magn_ssg.id' 2016-05-24 + _definition.id + '_space_group_symop_magn_ssg_operation.algebraic' + _definition.update 2016-05-24 + _description.text +; + A parsable string giving one of the symmetry operations of the + magnetic superspace group in algebraic form. The analogy + between parsable labels for magnetic and non-magnetic symmetry + operations is perfect except for the fact that a magnetic symop + label ends with an additional piece of information ("-1" or "+1") + indicating that the operation is or is not time-reversed, + respectively. This tag is intended for use with the BNS + description of the magnetic basic cell. -_description.text + Analogous tags: msCIF:_space_group_symop.ssg_operation_algebraic ; - An arbitrary identifier that uniquely labels each symmetry - operation in a looped list of magnetic superspace-group symmetry - operations. Most commonly, a sequence of positive integers is - used for this identification. - The _space_group_symop_magn_ssg.id alias provides backwards - compatibility with the established magCIF prototype. + _name.category_id space_group_symop_magn_ssg_operation + _name.object_id algebraic + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Text - Analogous tags: msCIF:_space_group_symop_ssg_id + loop_ + _description_example.case + _description_example.detail + x1,x2,x3,x4,x5,x6,+1 +; + the identity element in (3+3)D. +; + x1,x2,x3,x4+1/2,-1 +; + a superspace anti-centering translation + based on a simple 180-degree phase shift + of a single modulation vector +; + x1+1/2,x2+1/2,-x3,-x4,-1 +; + a time-reversed n-glide perpendicular to + a z-axis modulation +; + x1-x2,x1,x3+1/3,x4-1/6,x5,+1 +; + a non-time-reversed 6_2 screw axis with + phase shift along a pair of z-axis + modulations ; -_type.contents Text -_type.container Single -_type.purpose Key save_ +save_space_group_symop_magn_ssg_operation.id + + _definition.id '_space_group_symop_magn_ssg_operation.id' + _alias.definition_id '_space_group_symop_magn_ssg.id' + _alias.deprecation_date 2016-05-24 + _definition.update 2016-05-24 + _description.text +; + An arbitrary identifier that uniquely labels each symmetry + operation in a looped list of magnetic superspace-group symmetry + operations. Most commonly, a sequence of positive integers is + used for this identification. + The _space_group_symop_magn_ssg.id alias provides backwards + compatibility with the established magCIF prototype. + + Analogous tags: msCIF:_space_group_symop_ssg_id +; + _name.category_id space_group_symop_magn_ssg_operation + _name.object_id id + _type.purpose Key + _type.source Assigned + _type.container Single + _type.contents Text -#============================================================================= -# The dictionary's audit trail and creation history. -#============================================================================ +save_ -loop_ - _dictionary_audit.version - _dictionary_audit.date - _dictionary_audit.revision - 0.1.0 2016-05-24 + loop_ + _dictionary_audit.version + _dictionary_audit.date + _dictionary_audit.revision + 0.1.0 2016-05-24 ; - Initial automatic conversion from draft magCIF format (James Hester) + Initial automatic conversion from draft magCIF format (James Hester) ; - 0.9.0 2016-05-27 + 0.9.0 2016-05-27 ; - Manual editing of examples and definition text to remove - conversion artefacts. - Reparenting of categories that are children of cif_core categories. + Manual editing of examples and definition text to remove + conversion artefacts. + Reparenting of categories that are children of cif_core categories. ; - 0.9.1 2016-05-30 + 0.9.1 2016-05-30 ; - Added import of cif_core dictionary. Added category keys and linked items. + Added import of cif_core dictionary. Added category keys and linked + items. ; - 0.9.2 2016-06-10 + 0.9.2 2016-06-10 ; - Added missing transformation and parent space group items. Enhanced type - information + Added missing transformation and parent space group items. Enhanced type + information ; - 0.9.3 2016-06-23 + 0.9.3 2016-06-23 ; - Finalised outstanding issues from conversion. + Finalised outstanding issues from conversion. ; - 0.9.4 2016-06-28 + 0.9.4 2016-06-28 ; - Added underscore aliases for datanames already in common use + Added underscore aliases for datanames already in common use ; - 0.9.5 2016-07-05 + 0.9.5 2016-07-05 ; - Added _space_group.magn_point_group_number; - changed _space_group.magn_point_group - to _space_group.magn_point_group_name + Added _space_group.magn_point_group_number; + changed _space_group.magn_point_group + to _space_group.magn_point_group_name ; - 0.9.6 2016-10-10 + 0.9.6 2016-10-10 ; - Moved _space_group.magn_ items to new category _space_group_magn + Moved _space_group.magn_ items to new category _space_group_magn ; - 0.9.7 2016-12-16 + 0.9.7 2016-12-16 ; - Editorial/consistency changes (B. McMahon) + Editorial/consistency changes (B. McMahon) ; - 0.9.8 2018-08-24 + 0.9.8 2018-08-24 ; - Added _atom_site_moment.magnitude, improved descriptions of _atom_site_moment - .cartesion* items, corrected and improved *_symmform descriptions. Created - the atom_site_rotation category. (B Campbell) + Added _atom_site_moment.magnitude, improved descriptions of + _atom_site_moment .cartesion* items, corrected and improved *_symmform + descriptions. Created the atom_site_rotation category. (B Campbell) ; - 0.9.9 2023-07-17 + 0.9.9 2023-07-17 ; - Changed several instances of "Jones-Faithful notation" to - "Jones faithful notation". + Changed several instances of "Jones-Faithful notation" to + "Jones faithful notation". - Changed the object id of the _parent_space_group.name_H-M_alt data item. + Changed the object id of the _parent_space_group.name_H-M_alt data item. ;