
Architecture
August 1st, 2023

Group Members

Priyul
Mahabeer

Ashir Butt Jaimen
Govender

Dharshan
Pillay

Edwin
Sen-Hong
Chang

u20421169 u19027487 u20424575

2

Table of Contents

Group Members..1

Table of Contents.. 2

Architectural Design Strategy... 3

Architectural Quality Requirements... 3

Security..3

Reliability... 4

Scalability...5

Usability... 5

Maintainability...6

Chosen Architectural Design Based on Architectural Quality Requirements............7

Component-Based Architecture (CBA).. 7

Microservices Architecture..7

Three-Tiered Architecture... 8

Architectural Design Diagram... 9

Architectural Constraints.. 10

3

Architectural Design Strategy
We aim to apply the strategy of design based on quality requirements for our system. To ensure

the success of this project and our system, we have analyzed the client’s specification

requirements and user stories, resulting in a substantial and comprehensive collection of quality

requirements for the system. These quality requirements serve as a crucial cornerstone in the

architectural design process.

Architectural Quality Requirements
Security
A key pillar of the architectural design for our service request system is its robust and

comprehensive security framework, which is structured around a role-based access control

system. This ensures that users can only execute actions and access information that aligns with

their roles and responsibilities within the system, thereby maintaining integrity and

confidentiality. The role-based model is multi-tiered, allowing internal users to possess one or

more roles that dictate their permissible operations within the system. The tiering of roles is

hierarchically organized, enabling different levels of access to system functionalities. This

ensures that users with higher roles can execute advanced operations, whereas lower-level roles

are restricted to basic functionalities. Such a strategy effectively mitigates the risk of accidental

or intentional misuse of the system, and safeguards its core operations. In the context of data

visibility, users are constrained to viewing only the tickets pertinent to their assigned group(s),

thereby further strengthening the security framework of the system. This stratified approach to

data access is essential in preventing unauthorized access to sensitive data, and maintains the

principle of least privilege, a cornerstone of information security. To fortify these security

measures, our system employs token-based authorization techniques. This token-based system

provides secure, controlled access to our APIs, thus enabling secure transactions of data

between client-side and server-side components of our system. Each token is generated and

encrypted using advanced cryptographic methods, ensuring that they cannot be tampered with

4

or forged. Moreover, tokens are time-limited and are constantly refreshed, reducing the

window of opportunity for any potential security breach. In addition to token authorization, the

system incorporates stringent user authentication mechanisms. This involves multi-factor

authentication that validates the identity of a user by requiring multiple evidence of

authenticity, further reinforcing the overall system security. Security, as an architectural quality

requirement, is therefore woven into every facet of our system's design and operation,

providing a reliable and secure platform for managing service requests.

Reliability
The architectural design for our service request system is underpinned by an unyielding

commitment to reliability. At the heart of our design philosophy is the ambition to build a

system that minimizes downtime and swiftly mitigates any operational disruptions, thus

providing users with a seamless and uninterrupted service experience. The system has been

structured around a robust error-handling mechanism that quickly identifies and rectifies any

anomalies in the system operations. This proactive error management approach is paired with

stringent continuous monitoring and performance logging strategies that ensure optimal

operation at all times. To further enhance the system’s reliability, the architecture separates the

client and internal staff portals. This ensures the functioning of one does not impact the other,

thus providing an added layer of operational resilience. In a scenario where the internal staff

portal encounters issues, clients can still access their portal without hindrance, and continue to

interact with the system seamlessly. This separation aids in isolating potential issues, simplifies

troubleshooting, and reduces downtime. In conclusion, our unwavering focus on reliability

shapes our architectural design strategy at every level. We are committed to providing a service

request system that users can rely on, irrespective of the scale of demand or operational

challenges. Our holistic approach to reliability ensures that our system is resilient, adaptive, and

dependable, providing a seamless user experience at all times.

5

Scalability
One of the key tenets guiding the architectural design of our application is the imperative to

address scalability as a critical non-functional requirement. The goal is to construct an

architecture that can seamlessly and efficiently accommodate a growing user base and

increasing demands on system resources without compromising on performance or user

experience. To achieve this paramount objective, our application is built upon a foundation of

cutting-edge technologies, including MongoDB, Node.js, and Angular. These technologies have

been carefully selected for their ability to foster a scalable ecosystem that can easily adapt to

the evolving needs of our users and business requirements. While our application has been

architected as a microservices-based system, we shall delve deeper into this architectural

paradigm later in the document. Suffice it to say that the microservices architecture is another

integral facet of our scalability strategy. By dividing our application into discrete and loosely

coupled microservices, we create a cohesive ecosystem wherein each service can independently

scale based on its specific demands. This modularity ensures that system growth can be

orchestrated in a fine-grained manner, granting us unparalleled flexibility in managing our

application's resources. In conclusion, our commitment to addressing scalability as a

non-negotiable non-functional requirement manifests through the astute integration of

MongoDB, Node.js, and Angular technologies. The orchestrated marriage of these tools,

complemented by our microservices and component-based architectures, aspires to forge an

application capable of handling increased user load and expanding business horizons, all while

delivering a seamless and unparalleled user experience. As we progress in our architectural

journey, these scalable underpinnings shall form the bedrock upon which we construct a robust

and dynamic application.

Usability
In our relentless pursuit of creating an exceptional user experience, the notion of usability

stands as a fundamental pillar guiding the design and development of our application. As a

non-functional requirement of paramount importance, usability encapsulates our dedication to

6

crafting an intuitive, user-friendly, and delightful interface that fosters ease of interaction

and a sense of empowerment for our valued users. The triumvirate of technologies comprising

MongoDB, Node.js, and Angular underpinning our application provides the ideal foundation for

translating our usability vision into reality. Together, they enable us to orchestrate an interface

that seamlessly marries efficiency with elegance, all while ensuring a fluid and responsive user

journey. Angular, the cornerstone of our front-end development, embraces a component-based

architecture that fosters modularity and reusability. This architecture not only streamlines the

development process but also facilitates consistent design patterns, leading to a coherent and

familiar user interface. The result is an interface that exudes coherence and efficiency, where

users can effortlessly navigate, comprehend, and interact with the application's features.

Beyond the technological underpinnings, the forthcoming discussion will delve deeper into our

component-based architecture, which further underscores our commitment to usability. By

decoupling the application into self-contained, reusable components, we create a harmonious

ecosystem where each component is thoughtfully designed to serve a specific function or

feature. This meticulous organization ensures that users are presented with a clear and

uncluttered interface, enhancing their cognitive ease and elevating the overall usability of our

application.

Maintainability
Amidst our pursuit of creating a cutting-edge application that sets new standards in

performance and user experience, we remain ever-mindful of the indispensable attribute of

maintainability. As a non-functional requirement of paramount importance, maintainability

underpins our commitment to developing an application that is not only exceptional in its

present form but also sustains its excellence over time, with ease of updates, modifications, and

enhancements. The harmonious amalgamation of MongoDB, Node.js, and Angular at the core

of our application serves as a testament to our dedication to creating a maintainable ecosystem.

Each technology brings with it a unique set of attributes that bolsters our ability to swiftly adapt

and refine the application as needed, with minimal disruption to ongoing operations. Our

architectural choice of a three-tiered design reinforces the principle of maintainability. While a

7

detailed exploration of this architecture is reserved for a later section, it is vital to

acknowledge its impact on maintainability. By separating the presentation, business logic, and

data layers, our application's components can be maintained independently, allowing

developers to address specific functionalities or troubleshoot issues without interfering with

other parts of the system.

Chosen Architectural Design Based on
Architectural Quality Requirements
In order to satisfy our architectural quality requirements of security, reliability, scalability,

usability, and maintainability, we have strategically chosen an architectural design that is

characterized by three interdependent, yet distinct structures: Component-Based Architecture,

Microservices Architecture, and a Three-tiered Architecture. These design paradigms will

collaboratively function to ensure the fulfillment of our quality requirements.

Component-Based Architecture (CBA)

We have chosen a Component-Based Architecture (CBA) for our service request system, aiming

to enhance usability and maintainability. The CBA approach fosters the creation of a system

built from self-contained, reusable, and interchangeable modules, each designed to execute a

specific functionality. This architecture significantly enhances the system's usability by

streamlining the interface and maintaining a consistent design pattern, thereby delivering a

smooth, intuitive, and efficient user experience. Moreover, the decoupling of the application

into independent components contributes to the system's maintainability. Developers can

individually update, modify, or troubleshoot components without impacting the rest of the

system, thereby simplifying maintenance, reducing costs, and facilitating quick responses to

change requests or identified issues.

Microservices Architecture

The choice to implement a Microservices Architecture is primarily driven by the need to ensure

scalability and reliability. Microservices allow our system to be divided into loosely coupled

8

services, each performing a unique function. This architectural style facilitates independent

scaling of services based on their individual demands, providing flexibility in resource allocation

and ensuring efficient system growth. In addition to scalability, microservices enhance system

reliability. Since each service operates independently, a failure in one service does not directly

impact the others. This compartmentalization of potential errors significantly mitigates the risk

of widespread system disruptions, thus augmenting system reliability.

Three-Tiered Architecture

Our system will also employ a Three-tiered Architecture, an approach that essentially separates

the presentation, business logic, and data access layers. This architectural design enhances

security, maintainability, and scalability. The clear separation of concerns enhances security by

restricting access to the data layer and business logic from the presentation layer, thereby

limiting the potential for unauthorized access or malicious activities. From a maintainability

perspective, the decoupling of the system into distinct layers allows for isolated updates,

modifications, or troubleshooting, without affecting the rest of the system. This isolation

simplifies maintenance and fosters rapid and efficient responses to identified issues or required

changes. Finally, in terms of scalability, this architecture enables the independent scaling of

each layer based on its specific demands, ensuring optimal resource allocation and system

performance.

In conclusion, our chosen architectural design, built on the principles of Component-Based

Architecture, Microservices Architecture, and a Three-tiered Architecture, aligns with our

commitment to meeting the architectural quality requirements of security, reliability, scalability,

usability, and maintainability. This carefully curated combination of architectures aims to ensure

a robust, user-friendly, and enduring service request system.

9

Architectural Design Diagram

10

Architectural Constraints

Client Requirements:

User interface constraints: The client may have specific user interface design guidelines or

branding requirements that need to be followed.

Deployment Constraints:

Hosting environment: The system may need to be deployed on a specific infrastructure, such as

on-premises servers or a cloud platform

Scalability requirements: The system may have to handle a high number of concurrent users or

accommodate future growth.

Performance and Security:

Performance constraints: The system may have specific performance requirements, such as

response time targets or throughput expectations. These constraints can influence architectural

choices regarding caching, load balancing, or data storage optimizations.

Security requirements: The system has specific security requirements, such as encryption,

access control.

Technology Choices

MongoDB:

MongoDB is a NoSQL database that offers flexibility in data modeling and scalability. It stores

data in a JSON-like format (BSON) and provides rich querying capabilities.

11

Express.js

Express.js is a web application framework for Node.js. It provides a minimalist and flexible

approach to building web applications and APIs. Express.js simplifies routing, middleware

management, and request handling, making it well-suited for creating server-side components

in our architecture.

Angular:

Angular is used for building dynamic and interactive web applications. It follows the MVC

architectural pattern and provides a declarative approach to building user interfaces. Angular

simplifies data binding, dependency injection, and component-based development, enhancing

code maintainability and reusability.

Node.js:

Node.js is a runtime environment that allows JavaScript to run on the server-side. It provides an

event-driven, non-blocking I/O model, making it efficient for handling concurrent requests.

Node.js is known for its scalability and high performance, making it a good fit for building the

backend components of your application.

