Coding Standards.md 8/1/2023

Coding Standards

FrontEnd - lonic/Angular
File and Folder Structure

* Files and folders are organised based on a feature or module.
® Used consistent naming conventions for files and folders.
* Separated components, services, and models into their respective folders.

Component Naming

* Component names follow the PascalCase convention.
* Component names are suffixed with Page, Component, or Dialog.

Module Organization

® Each feature or functionality has its own module.
* Related components, services, and models are grouped within the same module.
* Modules are defined and configured using the NgModule decorator.

Component Structure

* Components follow the Angular component structure, utilizing decorators such as @Component,
@Input, @Output, and @ViewChild.

* Templates, styles, and logic are organized into their respective sections.

* Components adhere to the Single Responsibility Principle (SRP) by focusing on specific tasks.

Services

* Services encapsulate business logic and data manipulation.

® Services are registered either in the root module (AppModule) or feature modules based on their
scope.

* Dependency injection is used to inject services into components.

Code Formatting

* (Consistent indentation and formatting conventions are followed.
* Proper spacing and line breaks are used to enhance code readability.
* Variable and function names are descriptive, conveying their purpose.

TypeScript Best Practices

e Strict type checking is enabled by setting "strict": true in the tsconfig.json file.
* TypeScript features like interfaces, generics, and type annotations are utilized.
* The any type is avoided unless absolutely necessary.

Angular/lonic Best Practices



Coding Standards.md 8/1/2023

* Angular's built-in directives and features are used whenever possible.
* Jonic's Ul components are leveraged to achieve consistent and responsive design.
* Observables and reactive programming are employed for handling asynchronous operations.

Error Handling and Logging

® Error handling mechanisms are implemented to enhance the user experience.
* Angular's error handling mechanisms, such as ErrorHandler or global error interceptors, are utilized.
* Errors and exceptions are logged for debugging purposes.

Testing

® Unit tests are written using Jasmine.
* Components, services, and other application logic are tested.
* Karma and Cypresss are also used for testing.

Backend - Rust
File and Module Structure:

* Organized files and modules based on the application's features or functionality.
* Use a consistent naming convention for files and modules.
® Separate route handlers, models, and utility functions into their respective modules.

Endpoint Routing

* Endpoint routes are defined using attribute macros provided by Rocket, such as , .

1

® Related routes are grouped within the same module.
* Dynamic routes are handled using route parameters and path variables.

Route Handlers

* Route handlers are implemented as functions with clear and descriptive names.
* Route handlers follow the single responsibility principle, focusing on specific tasks.
® Request data handling and validation are performed using Rocket's request guards and extractors.

Data Models

¢ Data models or request/response objects are defined using Rust structs.

® Traits such as , , ,and are implemented for data
serialization and deserialization.

® External crates like Serde can be used for advanced serialization and deserialization needs.

Error Handling

® Errors are handled and propagated using the type in route handlers.
® Rocket's error handling mechanisms, such as combinators (? operator) and the
attribute macro, are utilized.

2/3



Coding Standards.md 8/1/2023

* Custom error types are implemented, or existing crates like or are used for
structured error handling.

Middleware

* Rocket's middleware feature is employed for cross-cutting concerns, such as logging, authentication, or
request/response modification.

® Custom middleware functions are created or existing middleware crates compatible with Rocket are
utilized.

Testing

* Unit tests are written to cover route handlers and other application logic.
* Rocket's is used to simulate HTTP requests in tests.
* Testing frameworks like or macros can be used for assertions.

Code Formatting

* Consistent code formatting conventions, including indentation and line length, are followed.
® (Code is formatted using tools like Rustfmt to maintain consistency.
* Descriptive variable and function names enhance code readability.

Documentation

¢ Documentation comments (///) are included to provide clear explanations of the code.
* Route handlers, important functions, and modules are documented, highlighting their purpose, input,
and output.

Security

* Security best practices, such as input validation, authentication, and authorization, are considered.
® User inputs are sanitized to prevent common web vulnerabilities like SQL injection and XSS.

3/3



