forked from cvat-ai/cvat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_handler.py
42 lines (35 loc) · 1.42 KB
/
model_handler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
# Copyright (C) 2023 CVAT.ai Corporation
#
# SPDX-License-Identifier: MIT
import numpy as np
import cv2
import torch
from segment_anything import sam_model_registry, SamPredictor
def convert_mask_to_polygon(mask):
contours = None
if int(cv2.__version__.split('.')[0]) > 3:
contours = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_TC89_KCOS)[0]
else:
contours = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_TC89_KCOS)[1]
contours = max(contours, key=lambda arr: arr.size)
if contours.shape.count(1):
contours = np.squeeze(contours)
if contours.size < 3 * 2:
raise Exception('Less then three point have been detected. Can not build a polygon.')
polygon = []
for point in contours:
polygon.append([int(point[0]), int(point[1])])
return polygon
class ModelHandler:
def __init__(self):
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.sam_checkpoint = "/opt/nuclio/sam/sam_vit_h_4b8939.pth"
self.model_type = "vit_h"
self.latest_image = None
sam_model = sam_model_registry[self.model_type](checkpoint=self.sam_checkpoint)
sam_model.to(device=self.device)
self.predictor = SamPredictor(sam_model)
def handle(self, image):
self.predictor.set_image(np.array(image))
features = self.predictor.get_image_embedding()
return features