-
Notifications
You must be signed in to change notification settings - Fork 57
/
Copy pathlayers.py
283 lines (218 loc) · 9.59 KB
/
layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
from inits import *
import tensorflow as tf
flags = tf.app.flags
FLAGS = flags.FLAGS
# global unique layer ID dictionary for layer name assignment
_LAYER_UIDS = {}
def get_layer_uid(layer_name=''):
"""Helper function, assigns unique layer IDs."""
if layer_name not in _LAYER_UIDS:
_LAYER_UIDS[layer_name] = 1
return 1
else:
_LAYER_UIDS[layer_name] += 1
return _LAYER_UIDS[layer_name]
def sparse_dropout(x, keep_prob, noise_shape):
"""Dropout for sparse tensors."""
random_tensor = keep_prob
random_tensor += tf.random_uniform(noise_shape)
dropout_mask = tf.cast(tf.floor(random_tensor), dtype=tf.bool)
pre_out = tf.sparse_retain(x, dropout_mask)
return pre_out * (1./keep_prob)
def sparse_dense_matmul_batch(sp_a, b):
def map_function(x):
i, dense_slice = x[0], x[1]
sparse_slice = tf.sparse.reshape(tf.sparse.slice(
sp_a, [i, 0, 0], [1, sp_a.dense_shape[1], sp_a.dense_shape[2]]),
[sp_a.dense_shape[1], sp_a.dense_shape[2]])
mult_slice = tf.sparse.matmul(sparse_slice, dense_slice)
return mult_slice
elems = (tf.range(0, sp_a.dense_shape[0], delta=1, dtype=tf.int64), b)
return tf.map_fn(map_function, elems, dtype=tf.float32, back_prop=True)
def dot(x, y, sparse=False):
"""Wrapper for 3D tf.matmul (sparse vs dense)."""
if sparse:
res = sparse_dense_matmul_batch(x, y)
else:
res = tf.einsum('bij,jk->bik', x, y) # tf.matmul(x, y)
return res
def gru_unit(support, x, var, act, mask, dropout, sparse_inputs=False):
"""GRU unit with 3D tensor inputs."""
# message passing
support = tf.nn.dropout(support, dropout) # optional
a = tf.matmul(support, x)
# update gate
z0 = dot(a, var['weights_z0'], sparse_inputs) + var['bias_z0']
z1 = dot(x, var['weights_z1'], sparse_inputs) + var['bias_z1']
z = tf.sigmoid(z0 + z1)
# reset gate
r0 = dot(a, var['weights_r0'], sparse_inputs) + var['bias_r0']
r1 = dot(x, var['weights_r1'], sparse_inputs) + var['bias_r1']
r = tf.sigmoid(r0 + r1)
# update embeddings
h0 = dot(a, var['weights_h0'], sparse_inputs) + var['bias_h0']
h1 = dot(r*x, var['weights_h1'], sparse_inputs) + var['bias_h1']
h = act(mask * (h0 + h1))
return h*z + x*(1-z)
class Layer(object):
"""Base layer class. Defines basic API for all layer objects.
Implementation inspired by keras (http://keras.io).
# Properties
name: String, defines the variable scope of the layer.
logging: Boolean, switches Tensorflow histogram logging on/off
# Methods
_call(inputs): Defines computation graph of layer
(i.e. takes input, returns output)
__call__(inputs): Wrapper for _call()
_log_vars(): Log all variables
"""
def __init__(self, **kwargs):
allowed_kwargs = {'name', 'logging'}
for kwarg in kwargs.keys():
assert kwarg in allowed_kwargs, 'Invalid keyword argument: ' + kwarg
name = kwargs.get('name')
if not name:
layer = self.__class__.__name__.lower()
name = layer + '_' + str(get_layer_uid(layer))
self.name = name
self.vars = {}
logging = kwargs.get('logging', False)
self.logging = logging
self.sparse_inputs = False
def _call(self, inputs):
return inputs
def __call__(self, inputs):
with tf.name_scope(self.name):
if self.logging and not self.sparse_inputs:
tf.summary.histogram(self.name + '/inputs', inputs)
outputs = self._call(inputs)
if self.logging:
tf.summary.histogram(self.name + '/outputs', outputs)
return outputs
def _log_vars(self):
for var in self.vars:
tf.summary.histogram(self.name + '/vars/' + var, self.vars[var])
class Dense(Layer):
"""Dense layer."""
def __init__(self, input_dim, output_dim, placeholders, dropout=0., sparse_inputs=False,
act=tf.nn.relu, bias=False, featureless=False, **kwargs):
super(Dense, self).__init__(**kwargs)
if dropout:
self.dropout = placeholders['dropout']
else:
self.dropout = 0.
self.act = act
self.sparse_inputs = sparse_inputs
self.featureless = featureless
self.bias = bias
# helper variable for sparse dropout
self.num_features_nonzero = placeholders['num_features_nonzero']
with tf.variable_scope(self.name + '_vars'):
self.vars['weights'] = glorot([input_dim, output_dim],
name='weights')
if self.bias:
self.vars['bias'] = zeros([output_dim], name='bias')
if self.logging:
self._log_vars()
def _call(self, inputs):
x = inputs
# dropout
if self.sparse_inputs:
x = sparse_dropout(x, 1-self.dropout, self.num_features_nonzero)
else:
x = tf.nn.dropout(x, 1-self.dropout)
# transform
output = dot(x, self.vars['weights'], sparse=self.sparse_inputs)
# bias
if self.bias:
output += self.vars['bias']
return self.act(output)
class GraphLayer(Layer):
"""Graph layer."""
def __init__(self, input_dim, output_dim, placeholders, dropout=0.,
sparse_inputs=False, act=tf.nn.relu, bias=False,
featureless=False, steps=2, **kwargs):
super(GraphLayer, self).__init__(**kwargs)
if dropout:
self.dropout = placeholders['dropout']
else:
self.dropout = 0.
self.act = act
self.support = placeholders['support']
self.sparse_inputs = sparse_inputs
self.featureless = featureless
self.bias = bias
self.mask = placeholders['mask']
self.steps = steps
# helper variable for sparse dropout
self.num_features_nonzero = placeholders['num_features_nonzero']
with tf.variable_scope(self.name + '_vars'):
self.vars['weights_encode'] = glorot([input_dim, output_dim],
name='weights_encode')
self.vars['weights_z0'] = glorot([output_dim, output_dim], name='weights_z0')
self.vars['weights_z1'] = glorot([output_dim, output_dim], name='weights_z1')
self.vars['weights_r0'] = glorot([output_dim, output_dim], name='weights_r0')
self.vars['weights_r1'] = glorot([output_dim, output_dim], name='weights_r1')
self.vars['weights_h0'] = glorot([output_dim, output_dim], name='weights_h0')
self.vars['weights_h1'] = glorot([output_dim, output_dim], name='weights_h1')
self.vars['bias_encode'] = zeros([output_dim], name='bias_encode')
self.vars['bias_z0'] = zeros([output_dim], name='bias_z0')
self.vars['bias_z1'] = zeros([output_dim], name='bias_z1')
self.vars['bias_r0'] = zeros([output_dim], name='bias_r0')
self.vars['bias_r1'] = zeros([output_dim], name='bias_r1')
self.vars['bias_h0'] = zeros([output_dim], name='bias_h0')
self.vars['bias_h1'] = zeros([output_dim], name='bias_h1')
if self.logging:
self._log_vars()
def _call(self, inputs):
x = inputs
# dropout
if self.sparse_inputs:
x = sparse_dropout(x, 1-self.dropout, self.num_features_nonzero)
else:
x = tf.nn.dropout(x, 1-self.dropout)
# encode inputs
x = dot(x, self.vars['weights_encode'],
self.sparse_inputs) + self.vars['bias_encode']
output = self.mask * self.act(x)
# convolve
for _ in range(self.steps):
output = gru_unit(self.support, output, self.vars, self.act,
self.mask, 1-self.dropout, self.sparse_inputs)
return output
class ReadoutLayer(Layer):
"""Graph Readout Layer."""
def __init__(self, input_dim, output_dim, placeholders, dropout=0.,
sparse_inputs=False, act=tf.nn.relu, bias=False, **kwargs):
super(ReadoutLayer, self).__init__(**kwargs)
if dropout:
self.dropout = placeholders['dropout']
else:
self.dropout = 0.
self.act = act
self.sparse_inputs = sparse_inputs
self.bias = bias
self.mask = placeholders['mask']
with tf.variable_scope(self.name + '_vars'):
self.vars['weights_att'] = glorot([input_dim, 1], name='weights_att')
self.vars['weights_emb'] = glorot([input_dim, input_dim], name='weights_emb')
self.vars['weights_mlp'] = glorot([input_dim, output_dim], name='weights_mlp')
self.vars['bias_att'] = zeros([1], name='bias_att')
self.vars['bias_emb'] = zeros([input_dim], name='bias_emb')
self.vars['bias_mlp'] = zeros([output_dim], name='bias_mlp')
if self.logging:
self._log_vars()
def _call(self, inputs):
x = inputs
# soft attention
att = tf.sigmoid(dot(x, self.vars['weights_att']) + self.vars['bias_att'])
emb = self.act(dot(x, self.vars['weights_emb']) + self.vars['bias_emb'])
N = tf.reduce_sum(self.mask, axis=1)
M = (self.mask-1) * 1e9
# graph summation
g = self.mask * att * emb
g = tf.reduce_sum(g, axis=1) / N + tf.reduce_max(g + M, axis=1)
g = tf.nn.dropout(g, 1-self.dropout)
# classification
output = tf.matmul(g, self.vars['weights_mlp']) + self.vars['bias_mlp']
return output