Skip to content

Latest commit

 

History

History
62 lines (40 loc) · 1.64 KB

README.md

File metadata and controls

62 lines (40 loc) · 1.64 KB

Review Assignment Due Date

Tweet Sentiment analysis

AboutInstallationHow To Use

About

This project aims to do tweets sentiment classification. We use epfl-ml-text-classification dataset.

Installation

Follow these steps:

  1. (Optional) Create and activate new environment using conda or venv (+pyenv).

    a. conda version:

    # create env
    conda create -n project_env python=PYTHON_VERSION
    
    # activate env
    conda activate project_env

    b. venv (+pyenv) version:

    # create env
    ~/.pyenv/versions/PYTHON_VERSION/bin/python3 -m venv project_env
    
    # alternatively, using default python version
    python3 -m venv project_env
    
    # activate env
    source project_env
  2. Install all required packages

    pip install -r requirements.txt

How To Use

Download the dataset from AIcrowd and put them inside a folder called data, at the root of the project. (/data/train_pos.txt for example)

You can then launch the jupyterlab environement to run the notebook with:

jupyter lab

Then run the cells inside the notebook finetuning.ipynb.

It contains the code that was used to fine-tune the model.