-
Notifications
You must be signed in to change notification settings - Fork 1
/
storyboard.twb
3314 lines (3313 loc) · 240 KB
/
storyboard.twb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<?xml version='1.0' encoding='utf-8' ?>
<!-- build 9300.16.0315.0125 -->
<workbook source-build='9.3.0 (9300.16.0315.0125)' source-platform='mac' version='9.3' xmlns:user='http://www.tableausoftware.com/xml/user'>
<preferences>
<preference name='ui.encoding.shelf.height' value='24' />
<preference name='ui.shelf.height' value='26' />
</preferences>
<datasources>
<datasource caption='fullSARS_8' inline='true' name='textscan.13oaf6a11t8xf21eb8sg60avxdl3' version='9.3'>
<connection class='textscan' directory='/Users/XiaochuanDu/Dropbox/512a3/dat' filename='fullSARS_8.csv' password='' server=''>
<relation name='rawSARS.csv' table='[rawSARS#csv]' type='table'>
<columns character-set='UTF-8' header='yes' locale='en_US' separator=','>
<column datatype='integer' name='month' ordinal='0' />
<column datatype='integer' name='day' ordinal='1' />
<column datatype='string' name='date' ordinal='2' />
<column datatype='string' name='country' ordinal='3' />
<column datatype='integer' name='cumulative_number_of_case' ordinal='4' />
<column datatype='integer' name='number_of_death' ordinal='5' />
<column datatype='integer' name='number_recovered' ordinal='6' />
<column datatype='integer' name='current_case' ordinal='7' />
</columns>
</relation>
<metadata-records>
<metadata-record class='column'>
<remote-name>month</remote-name>
<remote-type>20</remote-type>
<local-name>[month]</local-name>
<parent-name>[rawSARS.csv]</parent-name>
<remote-alias>month</remote-alias>
<ordinal>0</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='integer' name='DebugRemoteMetadata (size)'>8</attribute>
<attribute datatype='string' name='DebugRemoteType'>"sint64"</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>day</remote-name>
<remote-type>20</remote-type>
<local-name>[day]</local-name>
<parent-name>[rawSARS.csv]</parent-name>
<remote-alias>day</remote-alias>
<ordinal>1</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='integer' name='DebugRemoteMetadata (size)'>8</attribute>
<attribute datatype='string' name='DebugRemoteType'>"sint64"</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>date</remote-name>
<remote-type>129</remote-type>
<local-name>[date]</local-name>
<parent-name>[rawSARS.csv]</parent-name>
<remote-alias>date</remote-alias>
<ordinal>2</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
<attributes>
<attribute datatype='string' name='DebugRemoteCollation'>"en_US"</attribute>
<attribute datatype='string' name='DebugRemoteMetadata (compression)'>"heap"</attribute>
<attribute datatype='integer' name='DebugRemoteMetadata (size)'>4294967292</attribute>
<attribute datatype='integer' name='DebugRemoteMetadata (storagewidth)'>8</attribute>
<attribute datatype='string' name='DebugRemoteType'>"str"</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>country</remote-name>
<remote-type>129</remote-type>
<local-name>[country]</local-name>
<parent-name>[rawSARS.csv]</parent-name>
<remote-alias>country</remote-alias>
<ordinal>3</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
<attributes>
<attribute datatype='string' name='DebugRemoteCollation'>"en_US"</attribute>
<attribute datatype='string' name='DebugRemoteMetadata (compression)'>"heap"</attribute>
<attribute datatype='integer' name='DebugRemoteMetadata (size)'>4294967292</attribute>
<attribute datatype='integer' name='DebugRemoteMetadata (storagewidth)'>8</attribute>
<attribute datatype='string' name='DebugRemoteType'>"str"</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>cumulative_number_of_case</remote-name>
<remote-type>20</remote-type>
<local-name>[cumulative_number_of_case]</local-name>
<parent-name>[rawSARS.csv]</parent-name>
<remote-alias>cumulative_number_of_case</remote-alias>
<ordinal>4</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='integer' name='DebugRemoteMetadata (size)'>8</attribute>
<attribute datatype='string' name='DebugRemoteType'>"sint64"</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>number_of_death</remote-name>
<remote-type>20</remote-type>
<local-name>[number_of_death]</local-name>
<parent-name>[rawSARS.csv]</parent-name>
<remote-alias>number_of_death</remote-alias>
<ordinal>5</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='integer' name='DebugRemoteMetadata (size)'>8</attribute>
<attribute datatype='string' name='DebugRemoteType'>"sint64"</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>number_recovered</remote-name>
<remote-type>20</remote-type>
<local-name>[number_recovered]</local-name>
<parent-name>[rawSARS.csv]</parent-name>
<remote-alias>number_recovered</remote-alias>
<ordinal>6</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='integer' name='DebugRemoteMetadata (size)'>8</attribute>
<attribute datatype='string' name='DebugRemoteType'>"sint64"</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>current_case</remote-name>
<remote-type>20</remote-type>
<local-name>[current_case]</local-name>
<parent-name>[rawSARS.csv]</parent-name>
<remote-alias>current_case</remote-alias>
<ordinal>7</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='integer' name='DebugRemoteMetadata (size)'>8</attribute>
<attribute datatype='string' name='DebugRemoteType'>"sint64"</attribute>
</attributes>
</metadata-record>
<metadata-record class='capability'>
<remote-name />
<remote-type>0</remote-type>
<parent-name>[rawSARS.csv]</parent-name>
<remote-alias />
<aggregation>Count</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='string' name='character-set'>"UTF-8"</attribute>
<attribute datatype='string' name='collation'>"en_US"</attribute>
<attribute datatype='string' name='field-delimiter'>","</attribute>
<attribute datatype='string' name='header-row'>"true"</attribute>
<attribute datatype='string' name='locale'>"en_US"</attribute>
<attribute datatype='string' name='record-delimiter'>"\\r"</attribute>
<attribute datatype='string' name='single-char'>""</attribute>
</attributes>
</metadata-record>
</metadata-records>
</connection>
<aliases enabled='yes' />
<column datatype='integer' name='[Number of Records]' role='measure' type='quantitative' user:auto-column='numrec'>
<calculation class='tableau' formula='1' />
</column>
<column caption='Country' datatype='string' name='[country]' role='dimension' semantic-role='[Country].[ISO3166_2]' type='nominal' />
<column caption='Cumulative Number Of Case' datatype='integer' name='[cumulative_number_of_case]' role='measure' type='quantitative' />
<column caption='Current Case' datatype='integer' name='[current_case]' role='measure' type='quantitative' />
<column caption='Date' datatype='string' name='[date]' role='dimension' type='nominal' />
<column caption='Day' datatype='integer' name='[day]' role='dimension' type='quantitative' />
<column caption='Month' datatype='integer' name='[month]' role='dimension' type='quantitative' />
<column caption='Number Of Death' datatype='integer' name='[number_of_death]' role='measure' type='quantitative' />
<column caption='Number Recovered' datatype='integer' name='[number_recovered]' role='measure' type='quantitative' />
<column-instance column='[current_case]' derivation='Sum' name='[sum:current_case:qk]' pivot='key' type='quantitative' />
<column-instance column='[number_of_death]' derivation='Sum' name='[sum:number_of_death:qk]' pivot='key' type='quantitative' />
<column-instance column='[number_recovered]' derivation='Sum' name='[sum:number_recovered:qk]' pivot='key' type='quantitative' />
<layout dim-ordering='alphabetic' dim-percentage='0.452174' measure-ordering='alphabetic' measure-percentage='0.547826' show-structure='true' />
<style>
<style-rule element='mark'>
<encoding attr='color' field='[:Measure Names]' type='palette'>
<map to='#1f77b4'>
<bucket>"[textscan.13oaf6a11t8xf21eb8sg60avxdl3].[sum:current_case:qk]"</bucket>
</map>
<map to='#2ca02c'>
<bucket>"[textscan.13oaf6a11t8xf21eb8sg60avxdl3].[sum:number_recovered:qk]"</bucket>
</map>
<map to='#ff7f0e'>
<bucket>"[textscan.13oaf6a11t8xf21eb8sg60avxdl3].[sum:number_of_death:qk]"</bucket>
</map>
</encoding>
</style-rule>
</style>
<semantic-values>
<semantic-value key='[Country].[Name]' value='"United States"' />
</semantic-values>
</datasource>
</datasources>
<mapsources>
<mapsource name='Tableau' />
</mapsources>
<worksheets>
<worksheet name='Sheet 1'>
<table>
<view>
<datasources>
<datasource caption='fullSARS_8' name='textscan.13oaf6a11t8xf21eb8sg60avxdl3' />
</datasources>
<mapsources>
<mapsource name='Tableau' />
</mapsources>
<datasource-dependencies datasource='textscan.13oaf6a11t8xf21eb8sg60avxdl3'>
<column caption='Country' datatype='string' name='[country]' role='dimension' semantic-role='[Country].[ISO3166_2]' type='nominal' />
<column caption='Current Case' datatype='integer' name='[current_case]' role='measure' type='quantitative' />
<column caption='Date' datatype='string' name='[date]' role='dimension' type='nominal' />
<column-instance column='[country]' derivation='None' name='[none:country:nk]' pivot='key' type='nominal' />
<column-instance column='[date]' derivation='None' name='[none:date:nk]' pivot='key' type='nominal' />
<column-instance column='[current_case]' derivation='Sum' name='[sum:current_case:qk]' pivot='key' type='quantitative' />
</datasource-dependencies>
<aggregation value='true' />
</view>
<style>
<style-rule element='axis'>
<encoding attr='space' class='0' field='[textscan.13oaf6a11t8xf21eb8sg60avxdl3].[Longitude (generated)]' field-type='quantitative' max='28799923.701775078' min='-18059975.971040707' projection='EPSG:3857' range-type='fixed' scope='cols' type='space' />
<encoding attr='space' class='0' field='[textscan.13oaf6a11t8xf21eb8sg60avxdl3].[Latitude (generated)]' field-type='quantitative' max='19675366.155172609' min='-13132096.071485914' projection='EPSG:3857' range-type='fixed' scope='rows' type='space' />
</style-rule>
<style-rule element='mark'>
<encoding attr='color' field='[textscan.13oaf6a11t8xf21eb8sg60avxdl3].[sum:current_case:qk]' palette='tableau-red' type='interpolated' />
</style-rule>
<style-rule element='map-layer'>
<format attr='enabled' id='tab_base' value='true' />
<format attr='enabled' id='um_lcover' value='true' />
<format attr='enabled' id='tab_coastline' value='false' />
<format attr='enabled' id='pp2_line' value='false' />
<format attr='enabled' id='light_adm0_bnd' value='false' />
<format attr='enabled' id='light_adm0_lbl' value='false' />
<format attr='enabled' id='um_adm0_bnd' value='true' />
<format attr='enabled' id='um_adm0_lbl' value='true' />
<format attr='enabled' id='light_pp2_statebounds' value='false' />
<format attr='enabled' id='light_pp2_statelabels' value='false' />
<format attr='enabled' id='pp2_adminlabels' value='false' />
<format attr='enabled' id='pp2_statebounds' value='true' />
<format attr='enabled' id='pp2_statelabels' value='true' />
<format attr='enabled' id='countybounds' value='false' />
<format attr='enabled' id='countylabels' value='false' />
<format attr='enabled' id='zipbounds' value='false' />
<format attr='enabled' id='ziplabels' value='false' />
<format attr='enabled' id='tab_areabounds' value='false' />
<format attr='enabled' id='tab_arealabels' value='false' />
<format attr='enabled' id='tab_msabounds' value='false' />
<format attr='enabled' id='tab_msalabels' value='false' />
</style-rule>
<style-rule element='map'>
<format attr='washout' value='0.0' />
</style-rule>
</style>
<panes>
<pane>
<view>
<breakdown value='auto' />
</view>
<mark class='Automatic' />
<encodings>
<color column='[textscan.13oaf6a11t8xf21eb8sg60avxdl3].[sum:current_case:qk]' />
<lod column='[textscan.13oaf6a11t8xf21eb8sg60avxdl3].[none:country:nk]' />
<geometry column='[textscan.13oaf6a11t8xf21eb8sg60avxdl3].[Geometry (generated)]' />
</encodings>
</pane>
</panes>
<rows>[textscan.13oaf6a11t8xf21eb8sg60avxdl3].[Latitude (generated)]</rows>
<cols>[textscan.13oaf6a11t8xf21eb8sg60avxdl3].[Longitude (generated)]</cols>
<pages>
<column>[textscan.13oaf6a11t8xf21eb8sg60avxdl3].[none:date:nk]</column>
</pages>
</table>
</worksheet>
<worksheet name='Sheet 2'>
<table>
<view>
<datasources>
<datasource caption='fullSARS_8' name='textscan.13oaf6a11t8xf21eb8sg60avxdl3' />
</datasources>
<datasource-dependencies datasource='textscan.13oaf6a11t8xf21eb8sg60avxdl3'>
<column caption='Current Case' datatype='integer' name='[current_case]' role='measure' type='quantitative' />
<column caption='Date' datatype='string' name='[date]' role='dimension' type='nominal' />
<column-instance column='[date]' derivation='None' name='[none:date:nk]' pivot='key' type='nominal' />
<column-instance column='[current_case]' derivation='Sum' name='[sum:current_case:qk]' pivot='key' type='quantitative' />
</datasource-dependencies>
<aggregation value='true' />
</view>
<style />
<panes>
<pane>
<view>
<breakdown value='auto' />
</view>
<mark class='Automatic' />
</pane>
</panes>
<rows>[textscan.13oaf6a11t8xf21eb8sg60avxdl3].[sum:current_case:qk]</rows>
<cols>[textscan.13oaf6a11t8xf21eb8sg60avxdl3].[none:date:nk]</cols>
</table>
</worksheet>
<worksheet name='Sheet 3'>
<table>
<view>
<datasources>
<datasource caption='fullSARS_8' name='textscan.13oaf6a11t8xf21eb8sg60avxdl3' />
</datasources>
<datasource-dependencies datasource='textscan.13oaf6a11t8xf21eb8sg60avxdl3'>
<column caption='Cumulative Number Of Case' datatype='integer' name='[cumulative_number_of_case]' role='measure' type='quantitative' />
<column caption='Date' datatype='string' name='[date]' role='dimension' type='nominal' />
<column-instance column='[date]' derivation='None' name='[none:date:nk]' pivot='key' type='nominal' />
<column-instance column='[cumulative_number_of_case]' derivation='Sum' name='[sum:cumulative_number_of_case:qk]' pivot='key' type='quantitative' />
</datasource-dependencies>
<aggregation value='true' />
</view>
<style />
<panes>
<pane>
<view>
<breakdown value='auto' />
</view>
<mark class='Automatic' />
</pane>
</panes>
<rows>[textscan.13oaf6a11t8xf21eb8sg60avxdl3].[sum:cumulative_number_of_case:qk]</rows>
<cols>[textscan.13oaf6a11t8xf21eb8sg60avxdl3].[none:date:nk]</cols>
</table>
</worksheet>
<worksheet name='Sheet 4'>
<table>
<view>
<datasources>
<datasource caption='fullSARS_8' name='textscan.13oaf6a11t8xf21eb8sg60avxdl3' />
</datasources>
<datasource-dependencies datasource='textscan.13oaf6a11t8xf21eb8sg60avxdl3'>
<column caption='Country' datatype='string' name='[country]' role='dimension' semantic-role='[Country].[ISO3166_2]' type='nominal' />
<column caption='Current Case' datatype='integer' name='[current_case]' role='measure' type='quantitative' />
<column caption='Date' datatype='string' name='[date]' role='dimension' type='nominal' />
<column-instance column='[country]' derivation='None' name='[none:country:nk]' pivot='key' type='nominal' />
<column-instance column='[date]' derivation='None' name='[none:date:nk]' pivot='key' type='nominal' />
<column caption='Number Of Death' datatype='integer' name='[number_of_death]' role='measure' type='quantitative' />
<column caption='Number Recovered' datatype='integer' name='[number_recovered]' role='measure' type='quantitative' />
<column-instance column='[current_case]' derivation='Sum' name='[sum:current_case:qk]' pivot='key' type='quantitative' />
<column-instance column='[number_of_death]' derivation='Sum' name='[sum:number_of_death:qk]' pivot='key' type='quantitative' />
<column-instance column='[number_recovered]' derivation='Sum' name='[sum:number_recovered:qk]' pivot='key' type='quantitative' />
</datasource-dependencies>
<filter class='categorical' column='[textscan.13oaf6a11t8xf21eb8sg60avxdl3].[:Measure Names]'>
<groupfilter function='union' user:op='manual'>
<groupfilter function='member' level='[:Measure Names]' member='"[textscan.13oaf6a11t8xf21eb8sg60avxdl3].[sum:number_recovered:qk]"' />
<groupfilter function='member' level='[:Measure Names]' member='"[textscan.13oaf6a11t8xf21eb8sg60avxdl3].[sum:current_case:qk]"' />
<groupfilter function='member' level='[:Measure Names]' member='"[textscan.13oaf6a11t8xf21eb8sg60avxdl3].[sum:number_of_death:qk]"' />
</groupfilter>
</filter>
<sort class='manual' column='[textscan.13oaf6a11t8xf21eb8sg60avxdl3].[:Measure Names]' direction='ASC'>
<dictionary>
<bucket>"[textscan.13oaf6a11t8xf21eb8sg60avxdl3].[sum:number_recovered:qk]"</bucket>
<bucket>"[textscan.13oaf6a11t8xf21eb8sg60avxdl3].[sum:current_case:qk]"</bucket>
<bucket>"[textscan.13oaf6a11t8xf21eb8sg60avxdl3].[sum:number_of_death:qk]"</bucket>
</dictionary>
</sort>
<slices>
<column>[textscan.13oaf6a11t8xf21eb8sg60avxdl3].[:Measure Names]</column>
</slices>
<aggregation value='true' />
</view>
<style />
<panes>
<pane id='2'>
<view>
<breakdown value='auto' />
</view>
<mark class='Area' />
<encodings>
<color column='[textscan.13oaf6a11t8xf21eb8sg60avxdl3].[:Measure Names]' />
</encodings>
</pane>
</panes>
<rows>[textscan.13oaf6a11t8xf21eb8sg60avxdl3].[Multiple Values]</rows>
<cols>[textscan.13oaf6a11t8xf21eb8sg60avxdl3].[none:date:nk]</cols>
<pages>
<column>[textscan.13oaf6a11t8xf21eb8sg60avxdl3].[none:country:nk]</column>
</pages>
</table>
</worksheet>
<worksheet name='Sheet 5'>
<table>
<view>
<datasources>
<datasource caption='fullSARS_8' name='textscan.13oaf6a11t8xf21eb8sg60avxdl3' />
</datasources>
<datasource-dependencies datasource='textscan.13oaf6a11t8xf21eb8sg60avxdl3'>
<column caption='Country' datatype='string' name='[country]' role='dimension' semantic-role='[Country].[ISO3166_2]' type='nominal' />
<column caption='Current Case' datatype='integer' name='[current_case]' role='measure' type='quantitative' />
<column caption='Month' datatype='integer' name='[month]' role='dimension' type='quantitative' />
<column-instance column='[country]' derivation='None' name='[none:country:nk]' pivot='key' type='nominal' />
<column-instance column='[month]' derivation='None' name='[none:month:qk]' pivot='key' type='quantitative' />
<column caption='Number Of Death' datatype='integer' name='[number_of_death]' role='measure' type='quantitative' />
<column caption='Number Recovered' datatype='integer' name='[number_recovered]' role='measure' type='quantitative' />
<column-instance column='[current_case]' derivation='Sum' name='[sum:current_case:qk]' pivot='key' type='quantitative' />
<column-instance column='[number_of_death]' derivation='Sum' name='[sum:number_of_death:qk]' pivot='key' type='quantitative' />
<column-instance column='[number_recovered]' derivation='Sum' name='[sum:number_recovered:qk]' pivot='key' type='quantitative' />
</datasource-dependencies>
<filter class='categorical' column='[textscan.13oaf6a11t8xf21eb8sg60avxdl3].[:Measure Names]'>
<groupfilter function='union' user:op='manual'>
<groupfilter function='member' level='[:Measure Names]' member='"[textscan.13oaf6a11t8xf21eb8sg60avxdl3].[sum:number_recovered:qk]"' />
<groupfilter function='member' level='[:Measure Names]' member='"[textscan.13oaf6a11t8xf21eb8sg60avxdl3].[sum:current_case:qk]"' />
<groupfilter function='member' level='[:Measure Names]' member='"[textscan.13oaf6a11t8xf21eb8sg60avxdl3].[sum:number_of_death:qk]"' />
</groupfilter>
</filter>
<sort class='manual' column='[textscan.13oaf6a11t8xf21eb8sg60avxdl3].[:Measure Names]' direction='ASC'>
<dictionary>
<bucket>"[textscan.13oaf6a11t8xf21eb8sg60avxdl3].[sum:number_recovered:qk]"</bucket>
<bucket>"[textscan.13oaf6a11t8xf21eb8sg60avxdl3].[sum:current_case:qk]"</bucket>
<bucket>"[textscan.13oaf6a11t8xf21eb8sg60avxdl3].[sum:number_of_death:qk]"</bucket>
</dictionary>
</sort>
<slices>
<column>[textscan.13oaf6a11t8xf21eb8sg60avxdl3].[:Measure Names]</column>
</slices>
<aggregation value='true' />
</view>
<style />
<panes>
<pane id='1'>
<view>
<breakdown value='auto' />
</view>
<mark class='Area' />
<encodings>
<color column='[textscan.13oaf6a11t8xf21eb8sg60avxdl3].[:Measure Names]' />
</encodings>
</pane>
</panes>
<rows>[textscan.13oaf6a11t8xf21eb8sg60avxdl3].[Multiple Values]</rows>
<cols>[textscan.13oaf6a11t8xf21eb8sg60avxdl3].[none:month:qk]</cols>
<pages>
<column>[textscan.13oaf6a11t8xf21eb8sg60avxdl3].[none:country:nk]</column>
</pages>
</table>
</worksheet>
</worksheets>
<windows source-height='28'>
<window class='worksheet' name='Sheet 1'>
<cards>
<edge name='left'>
<strip size='160'>
<card type='pages' />
<card type='currpage' />
<card type='filters' />
<card type='marks' />
<card pane-specification-id='0' param='[textscan.13oaf6a11t8xf21eb8sg60avxdl3].[sum:current_case:qk]' type='color' />
</strip>
</edge>
<edge name='top'>
<strip size='2147483647'>
<card type='columns' />
</strip>
<strip size='2147483647'>
<card type='rows' />
</strip>
</edge>
</cards>
<viewpoint>
<current-page>
<multibucket>
<bucket>"1-Jun"</bucket>
</multibucket>
</current-page>
<highlight>
<color-one-way>
<field>[textscan.13oaf6a11t8xf21eb8sg60avxdl3].[none:date:nk]</field>
<field>[textscan.13oaf6a11t8xf21eb8sg60avxdl3].[sum:number_of_death:qk]</field>
</color-one-way>
</highlight>
</viewpoint>
</window>
<window class='worksheet' name='Sheet 2'>
<cards>
<edge name='left'>
<strip size='160'>
<card type='pages' />
<card type='filters' />
<card type='marks' />
</strip>
</edge>
<edge name='top'>
<strip size='2147483647'>
<card type='columns' />
</strip>
<strip size='2147483647'>
<card type='rows' />
</strip>
</edge>
</cards>
<viewpoint>
<highlight>
<color-one-way>
<field>[textscan.13oaf6a11t8xf21eb8sg60avxdl3].[none:date:nk]</field>
</color-one-way>
</highlight>
</viewpoint>
</window>
<window class='worksheet' name='Sheet 3'>
<cards>
<edge name='left'>
<strip size='160'>
<card type='pages' />
<card type='filters' />
<card type='marks' />
</strip>
</edge>
<edge name='top'>
<strip size='2147483647'>
<card type='columns' />
</strip>
<strip size='2147483647'>
<card type='rows' />
</strip>
</edge>
</cards>
<viewpoint>
<highlight>
<color-one-way>
<field>[textscan.13oaf6a11t8xf21eb8sg60avxdl3].[none:date:nk]</field>
</color-one-way>
</highlight>
</viewpoint>
</window>
<window class='worksheet' name='Sheet 4'>
<cards>
<edge name='left'>
<strip size='160'>
<card type='pages' />
<card type='currpage' />
<card type='filters' />
<card type='marks' />
<card type='measures' />
<card pane-specification-id='2' param='[textscan.13oaf6a11t8xf21eb8sg60avxdl3].[:Measure Names]' type='color' />
</strip>
</edge>
<edge name='top'>
<strip size='2147483647'>
<card type='columns' />
</strip>
<strip size='2147483647'>
<card type='rows' />
</strip>
</edge>
</cards>
<viewpoint>
<current-page>
<multibucket>
<bucket>"United States"</bucket>
</multibucket>
</current-page>
<highlight>
<color-one-way>
<field>[textscan.13oaf6a11t8xf21eb8sg60avxdl3].[:Measure Names]</field>
<field>[textscan.13oaf6a11t8xf21eb8sg60avxdl3].[none:country:nk]</field>
<field>[textscan.13oaf6a11t8xf21eb8sg60avxdl3].[none:date:nk]</field>
<field>[textscan.13oaf6a11t8xf21eb8sg60avxdl3].[none:month:qk]</field>
</color-one-way>
</highlight>
</viewpoint>
</window>
<window class='worksheet' maximized='true' name='Sheet 5'>
<cards>
<edge name='left'>
<strip size='160'>
<card type='pages' />
<card type='currpage' />
<card type='filters' />
<card type='marks' />
<card type='measures' />
</strip>
</edge>
<edge name='top'>
<strip size='2147483647'>
<card type='columns' />
</strip>
<strip size='2147483647'>
<card type='rows' />
</strip>
</edge>
<edge name='right'>
<strip size='160'>
<card pane-specification-id='1' param='[textscan.13oaf6a11t8xf21eb8sg60avxdl3].[:Measure Names]' type='color' />
</strip>
</edge>
</cards>
<viewpoint>
<current-page>
<multibucket>
<bucket>"China"</bucket>
</multibucket>
</current-page>
<selection-collection>
<node-selection select-tuples='false'>
<oriented-node-reference orientation='vertical'>
<node-reference>
<axis>[textscan.13oaf6a11t8xf21eb8sg60avxdl3].[Multiple Values]</axis>
</node-reference>
<page-reference>
<fields>
<field>[textscan.13oaf6a11t8xf21eb8sg60avxdl3].[none:country:nk]</field>
</fields>
<multibucket>
<bucket>"United States"</bucket>
</multibucket>
</page-reference>
</oriented-node-reference>
</node-selection>
</selection-collection>
<highlight>
<color-one-way>
<field>[textscan.13oaf6a11t8xf21eb8sg60avxdl3].[none:country:nk]</field>
<field>[textscan.13oaf6a11t8xf21eb8sg60avxdl3].[none:month:qk]</field>
</color-one-way>
</highlight>
</viewpoint>
</window>
</windows>
<thumbnails>
<thumbnail height='384' name='Sheet 1' width='384'>
iVBORw0KGgoAAAANSUhEUgAAAYAAAAGACAYAAACkx7W/AAAACXBIWXMAAAsTAAALEwEAmpwY
AAAgAElEQVR4nOy9V3McWbLn+QuVkTqhtSJIEFRFVVp2972jduaO2P0287bfY972aWxfxmbN
ZuZOq3u7uxSrWNRFBU1omVpFhtiHxAlGBjIBkAQJkIy/GY3IECdOZEa4+3H/u7u0vr7uRCIR
AgQIECDA+wU1EomQSCSOex4BAgQIEOANQz7uCQQIECBAgONBoAACBAgQ4D1FoAACBAgQ4D1F
oAACBAgQ4D1FoAACBAgQ4D1FoAACBAgQ4D1FoAACBAgQ4D1FoAACBAgQ4D1FoAACBAgQ4D1F
oAACBAgQ4D1FoAACBAgQ4D1FoAACnGg4joPjOMc9jQAB3kmoxz2BAAH8ME0T0zSxbZtarQaA
rusAaJqGLMtIknScUwwQ4J1AoAACHDts28Y0TQzDwLIsbNvGcRwkScK2bQAsy3KP13WdSCSC
LAcL2AABXgWBAghwrLAsC8MwKJfLe/YJJeCHUBShUAhd14PVQIAAL4lAAQQ4FpTLZUKhEKZp
NhX++8FxHNdNVK1WiUQiaJoWKIIAAV4QwRo6wGuH4zhUq1VyuRyGYQCgKAqlUumVA7yWZblx
ggABArwYghXAOwzhSz+uoKnjOBiG4fr3HcehUCi4bhtFUTBNk1QqRbFYxDTNfcdTFAXHcQiF
QsiyjCzLKIqCbdtUKhXC4XCwCggQ4AUQKIC3GOtra+QLBTo7O0mlUkiSRKFQ4OnDX+kfGsYw
DNJbm3xw7Tqq+mZ/6lqt5vr3vRa6JElUq1X373g8TrlcdoO83hWBEOZCYZimiWVZVCoVVFVF
URSq1Sq1Wg1JkgiHw2/wDgMEePsh5XI5J+gJfPLhOI4rSDVNwzAM7vzv/0VfIk62XKHoOAxe
/ID15SX6zRoL+QIRRaYrEmHRtNBiMU6fnSQajb4RS7lWq1EoFBqYPAK2baOqKrIsY9t2w37b
tpEkCU3T3G2SJDUoEcuykCSpgQUkSRJtbW3BCiBAgBdAoADeAjiOg23bPHrwgOzcDHpXD2al
zOlYBMlzzEw6g2XZTHZ3upa0JEk4DjiOzUo6Q9U06bpwif6hoQar+SgEp+M4VCoVdF3HsiwK
hUKDkLdt2xXara5n2zahUAjLshqSwMTxrZhBwiWk6zqhUChQBAECHAKBAngLUCgUsG2bp3fu
MKrWBZuwgL3Ws2Xb2I6DpihNx5EkCUmSeLi2gaTraJaJlUxx6cpVEsnkK89TKABFUVyGT61W
c+dpmuauQnJaBm7FCkAcJ+YtXETK7r01UwRim67rhMNh99gAAQI0R8ACOuGo1WqEQiEKhQJO
PtsQ0BXCUkCR5QOFv23bnOvpYjKVYLyjnVFs5qenj2SuYkWhqirVatVl/xQKBcrlMpVKxRX8
iUSiqZUuBL9XEfhxEHOoUqmQzWYbkscCBAiwF0EQ+IRjfW2N+Qf3CbW10x0JvzRtslVNnZCq
UtrZbulaeRnk83kMw0DTNMLhsEv3dBzHde0IV5DfxeO1/L3wWv6t4HUTWZZFtVolGo0eyT0F
CPAuIlgBnCAIOmOlUnE/L81MM5lKkMxliDdhuRxFobSYZXLrxo+sr66+8Hgi2FupVNzgbDQa
baBniiQtEfgFqFarLk3Vf03hz/dCHHeQkhLKJRQKBaygAAEOQKAAThimnjzh1p//6Pr9a/k8
kiTRlWzuMoHWAdXDCvO+ZIJB02Dpl5/J5/MtjxNJV/7grGEYlEolisUijuOgKIorwE3TdBWA
95+AEPZiTO+chSvIqyj2uyfvMdFoNKgVFCDAAQjekBMCIbjyG+ucSaV4/O3f2NzYQJNf3i3z
Ii4dVVHoScRZW15uOrdqtUo+n6dQKGCapivsvfkFpmlSKBQAiMVibqKWYRiuMPbSPkVMwuvv
97px/LGAVjEBqCsSVVWJxWKkUqkGGmmAAAGaI4gBnBAUi0Xu/PA93djIssRoMs69Gz+SVOSW
fvGXRStXSrVWIxqPu59t23YTrUzTdAVypVKhWq2i6zqapqEoihtwNQzDdQPF43EKhUIDpdMf
3PXfl1c5iGxh/4pBbFcUxXUr7Zft7I8zBAgQoI5AARwjbNsml8uxsb6Oqmn04NCxK4AlSeJs
R1tDaeRWSuBFlUMrQZiVFU4NDAB1QV4sFvckcQmrXtd1isUi8XicaDTa4DoS8YB4PE4oFHJj
GuJ877yF4Bb3INxBYr/YJ1xL8XjcVThC6fgViqCfqqpKKBSiWq26cYEAAQI8R6AAjgmO41As
Fnl040f6NIWFTI7zvd0Nx0Q8AutVVgD+fAE/JElitVhi4qNPkGWZWq3mCnE/W8drycuyjGVZ
qKpKJBJxq3qKsg1ilVCpVJrOXwSNhZXvDfR6VymyLBMOh90Es1wu565IhPCXZdmllgplJPIR
ZFmmUqkECiBAAB8CBfCG4TgOuVyOqcePMKoGPYpMIhLhUiRypNfx+sz3E/4AG+UKA1euEU8k
XOGqKAqaprnum2Zjiu3ecs7e1YUQuqqquqsAr6vGq1z8qxLxWVj9hmGQz+fdhjECYg5iPs32
aZrm5iWIccU4B7mPArweCFdioVCgu7s7+P6PCYECeINwHId0Os2jH39gPBHDdGzC0ZcX/K3c
QkKg+evs+FEzLbYNg8FrH9Le0UGpVHLdKpZltQykiqxeUc1zvxVGPp9vsNS97hrh7vHmAPih
KEoDNdbvLhIQsYBWvQXi8bg7V8dx3HmJcwV1NRBEbwbZTIaf/vB7oppG8t/+O8LhsKvAxbMX
/BavH4ECeIOwbZvNjQ3aJDAsi9hun9uXRTPh782kbQXDNFkslGg7Nc6p4WFisRhQt5Qrlcqe
ujte+qXwsfvvq5UyEttalWU46CUX/QO8x3rPEQFnVVXdFYJ3n3C1CQEjKpF6s6hN0ySXyxEO
h4lEIoHgeQOIRKN0j52irbvb7fcM8P3f/oa9tUnH2BgffPTxMc7w/UBAA32DUBSFnp4eMqEw
s5kccPTMlIO48pZts67qXPrmN4yOjbnCH3BLLLvHetw/3rG9mbzefS86x1b/mt1Ls9wBkVwm
3Gr+0g+CoipKUyuKQjgcbghKe68nktMCvD44jkN6Z4eZqSk+uH6d8fHxBsX+xddfE+vrQ5aD
Ok5vAkExuNcMb8BUPOiVSoVf/vwnJttTb3QupmUzXyoT6+klu7FO99AwkxcuuPtFgNVLxRT3
IHBQVc5m8J/f6rO4rlBCQmjvN2YrOinU6w1ZlkWxWHSbyQi3lffa3vtIJBJBDsFrRK1W48Z3
3xHKZ5ESSa588WUQnD9GBCuA14xarcbTR4/4+W9/pVCos1N0XUdp0aDlsEL1RVYOtuOwlS9w
Y3EJp1Yjtr3JWDiEsytwvcwer0BsFvz1bj8svOe3UhyCyeP38e+X/ex1d/njDKqqusFn75he
95U4R5wfi8UC4f8akU6nefTwV4ytTbYsh0Rnl+uWO8o8lzeFcrl8YBe7k45AAbxmqKpKZmmR
U6rM4++/dymRajyBUWt8eA6b8PUiiWGWbXNvdZ2n6xtc6OpkoqONkKaS1iOcOXcOy7LI5/Ou
lQzsYdoAbnDOTwd92RfXK8C920QZiWZso/3gnY9t24TDYTePwR8zaHZukCdwNGgWIxLIZtIs
3r+PHgoxfuYMk5cuIUmS+717f2fLslheWnJjNseFbCbD7Z9+Yn5mpmG7aZrcvXOHH/75n99K
5SUQKIDXCNM0KZfL2KqKJEkMRnSePniAJEn0DA6ytdsxy1v87CDLvmZZFD0+7IOQK5Xp0DU+
P32K9ngMB9hG5tInnwJ1lk6tVsMwDNf9c1A9nsPM0wtvULqZ8vIGmv2KpVX5B/8x3tWD8P2L
/gPAvowoRVFalqcO8GIQhoIXjuMwPzdHLBaj99x5aG9nYGSEarXq9o2YnZ7m9o0b7jmFQp6l
O7d4dPPnN30LDcik06g722zNzrgZ8cVikaePHiGnd4hXy8zPzR3rHF8FAQvoNWJzc5OHP3xH
XNeR4lE0VcXYXMc0TYaGh1l6+GCPIDvImljKZCmWSlwaHjrUHNrjMdrjzwO9a8USpz75DMAt
0+DlxnsDq955CR+6N1O32XybxQu8YwurvlW1T29SmNd6b5Un4FdWYv7lcnnPPj/EsfF4PCgc
dwRwHKfet8Jx0DSt4TvdWV/j6fw8ejTGRiaDVCwy+fEn6LrO6uoqlYU5LKc+xs7ODtNPnxLT
NEq7472KcnYch1w2y/LSEuNnzrxQldjh0VGWpHrvalVV2draYvbRI9pNg7GOdgCeLT7j1Pj4
S8/vOBE89a8R2UyGsWSS0x3trgDqjoR5NjeHJEl0jo6R9/DbD4LtOBh6mGQs9lIvxEahyND1
D0kmky4zxivEvZa632oXpRf81ND9qJ8CQtB6BbvfNSNKTAANPv39FKLX5SM+e1tQeufnXWX5
3VmB8H955HI5Hv/6K5l0mp2dHf7pf/4Pfv/f/hulUsk9plAoUK1WKcsyCUWmL5kgs7XFs7k5
t7psRlYpywrTT54wdec2vUaFnrY25CPq6vb41wdsPX7E8uLiC50nyzIjY2N0dHVhmiYL01P0
YdO++w5KkkSbYzP99Olb6QoKnvzXBMdxGBoeZtOXmBTTdTbnZpEkiYlz5ykn2sj7ApWw1/Vh
2TZL5SqRZIqeeOyFH7ZcuUzs9ATtHZ1uDX8xT+81xTYhkL2lmr2VP4XLxS88/e6YZkpCBFpb
uWS89y7cCd5gr/9aQnF4S1D7xxF/iyJyiqIQiUQIGHAvDhG4zWYy3PvpBo9/ucmPf/g9t378
gfPdXeiKzL3vvnVzOEKhEJIsE1cU5nbS5AsFYskkl65coVQqsXjnNkqxwIiqsD4zjWwYJKJR
0qUyox9cfmXXnCRJXPnwI67963/D+JkzrzTWs+mZPduS4TD28iILM3v3nXQELqDXBMMw2Nrc
pOzspUyqNYN0Ok0ymeTc9evMTU0xvzBHSpZxcGiLxSgbNTbKZTpCGpulMnpvH32nzrD94B7h
RHyfK++FJElkQhGunTrlCn+/JQ+N/n6vsPda8Pv58sUYfjeR2O69Ziu/vvd/UeJZHN8q98Bx
HLcmUTN4K4iGw+GGTNPA7//iME2TH/7pn4iYNXqiERgdxa6ZyKEQVrXMpxNnWDLMhhXdx198
yebGBg+//w5JC3Huk09QVZWNjXX6kwmSu53borLC8NmzPJt6St/ZSbp7e49kzuFw+JUbBEmS
RM9APyH/cyZJbJfKdHqSFt8WBHkArwmVSoWbv/9HJjo7UHyCq1qrsbiTphbSufLlV0R3l5Nr
ux25tpYWSXR20Tc4yMryMv0DA2SzWZYf3OdU4sXdP6uZLMOffUGqrY1CoeCWbPbD6zYRwtTv
7xcCXhwvCsZ5+fp+4e9XHILf3yqg7Kei1mq1Buvdv6rYT6m0QjQafSs7hhmGgWVZRHZrRwlW
WeSIa0ntBxHUvfvTDQZGRuju6+Pxzz+TjEQI6zpKewfnr1whFAphWZZbgkPUliqVSszPzRGN
RJAVBWVlCV1VWUlnmPjqa+K78ugkKWfLslhcXGT61i9cGRxo2FczTbYTKS598MGJmvNhEKwA
XgMsy+Lxgwd0R8J7hD+Armmc6e1hNZ1hZnaGrfl5vvm3/46QrhOJROjp7UXTNLa3t1lfXGTt
0UM6Qhqn2lK86ONlOw5ORyeptjZqtZrblF0IZH+1T3/iVTPXlIC/tHOrgK3XgheBXr+Q99JC
/QFosfrwr1i84wvf/37z9W5/2/z+3m5s5XLZpU56+zBYlkU4HD5QCLX6fg4LSZIYO3WK3r4+
VpaXefTwIXFVwQZCPb18cO0aUOfJ37v1CyOnxunt66NWq7G1ucnszAyxfA45FmXDBlnXUZHR
+weIn1A2ViaT4dm9u1z2CX/YrbZrVE/kvA9CoABeEf5Ao7vdMJBaiGsh8HRVZW19nTYJtre2
mLr5ExEkqhKEYnHaBgboc0zaerpeam6SJLFULHP5t5/vSZwCGqxwcXyrcfzwZjeL8cQKolX2
rjdY6/0evPv8bhk/Q8lbsM07d288QczJq5C8SkRUOn2bINxchmHUWS25nPtdSJLkdmir1Wpo
moamaU1dYpZluaUwortul5eBJElEIhGyG+sYW1uE2toI9Q8wfvas+7vOTD0lnM8xe/cOvX3/
BkVReHrvHrGaQb5aoSjLnLp8hYGBgRMvPG3LwqT+/akiX8a2WU6nKVWqRAYGX5mtdBx4u8yg
E4pn8/P88Mc/uC9WtVrFlGXWWvgExUPSkYjTVikz1NXJ2tISGDXGe7o4393FeEQnu7jIlvPy
3cDWM1mGLn3gCgJR9TISibgtG1sJXmhUbs3olv4H/kV86gf1J2gWwG224hDz8CeveVcCuq43
dA7Tdf2teFGFtS9WOIZhNKxyROMbsV1sK5fLLauiWpaFrutEo9EjCa6e/eAy7SOjTO/s0NHV
ha7rrK2ukk6nOXvuPOrAIEPnL7jffTikYUlgJ5KE2tqolEpsrK+/0jxeNwSpoHN4hNlcnppl
sbCzw//3yy3yagg5kcDYWGdtdZWdnZ23ig0UrACOAKuLi4zqGjNPnnDxyhUArPVVznZ2HHju
qd4eAKq5LJIv8DoU0ZkzTFayOQbbGusGHUSRBChZFsm2toZzhK9YCIqXgZ/H701i8yoMr+tH
WOVewe2dlzinFfxlIrzwKgy/cpIkyc0KrtVqJ1b4NwuA27btzjsajR6JYDnqbOdEMslHn37K
l998g6qqPHn0iOVHD0n29fHRF19y8fIV91hJkvjgs8+pViq0d3Rg2zY3//RHMtEoPb29J/J3
EXj480/0hkIYts2d1TWUcJjPz5ymNxlHkiTKYZ0fv/+eblmi98JFJs6dO+4pHwqBAnhFSJLE
5KVLzP78E45cr/AZDocxJcldKh4Kpoms6w1WdUhVSRSKbOULexRAM669f58UjTWU2m02d78b
qNWYfleNf7//PP+Y3piDVzkcNFYzNDvX63byN4Wp1Wqu8tnv+zguiIJ1klTvpCb8+OJ7MgzD
DaIKF4/43USpBP/39yaDwt6KsmPj40RjMWLx5ky1WCzmHq8oChd3i8GdZOEv5qYoMmPJDqxs
jopl0dPW5u6rmSblXI4z5ydZnJ+leurUiXzW/AgUwBGgo7OTyqUPKBbr3HpZlhk8d4GVmSl2
CgXGu7uIHvAwSJLE6ctXWHz4gKFoxLWq+1NJehLxAy1+sW9pJ00NUMJhJj76pOWL5WXytKJk
CmEtLH5/MNcvyL1WrN9dI+7RG4NoxhZqRS31u3zE9qaKzzdOsVh0+f6t4hPHBSHgBdNJ+OWL
xWKDm0YwfQSN1Vu62h9LSSaTx3afuq4zPDJy6OPjLRTFqyKbzaLr+pGs+BRFIZRK8cvUNON9
vVRUjS7ZaYjwJSIRfnN2AkWWUSQZ3hI3UKAAjggDQ42lGYbHx7m1tYVeNRp6+7ZCqGawcOc2
0f5+FpaXONXVCewGMFtY6dlSCVVWiIWfKxdD0/jg62/QtFBLXjzsLebWKtB7kNuh2XmtBLo/
4NzqxfS6cZpdx7vPKyC9NFU/w0gktZ1EVKvPGSTlcrnB+hcKWlTMjMfj9fpSTWo2CQTdtGB1
ZYXpu3e4+PEnjHl6DrwsLl25yrmLlzCMKn/+X//I2YnTe57JkLbbfwII7Rp8Jz0wHCiAQ8I0
TSzLolwuk0qlDvxRZVnGLuQZ6WirF3CrVpEliVQL5sVwZweSJPH02QJyR2dTi9ePdKHIfDrD
qYF+QrKMGY5w/rPPiUQOZncIoeO3FP0+er8gFThou9gntnn/9gd5W+EgF5N/ZeC9pvfYkyr4
obEqqtf/L0mSm2Phd79Fo1E36C0CwVAP8gcVTes4OzmJpqp7CtO9LMQKMpPJcGpykodLi1wZ
GW5+8O5vZhgGqysrLrX7JCJQAIeA4zjcv3WL0uoyEVVFbmvnyhdf7ivAZFlm4vqHbK6uUDNq
tI+dZm1+nnImQ3sshu6jIYqxumJRMnqYzfQWPanUvhZ41qgRb29H7emjs7ubgcHBA+9D/PM3
SYe9/v39Vgf7je8XyM2Cvq3GbibIW60yvDkMzcbzCs5KpUI0Gm1aiO64oev6nlLbQgF4E9/E
ikBRFHd1JxKrJEki9pI1ot5FyLLM6YmJIx+3ra2NTz/7jB//kGu6P1MsUtxlZT19/Jgbf/kL
58ZG6fg//u2+K/Ljwsl6E04oHMehtLXJZE83Ix3tpKplpqaeNvSrbYbOri4mL33AyJkzLE1P
US0WWN7JYLcQ6mXDIB8KMzg0RKF8cMnnc309dEUjyKvLzN78qaWyEH7mfD7Pzs4OmUymwX8s
BItXkIp9BzWW9wpskRl8kOvoMELKP5eDjmlVm0jsC4VC2LbtWssnCZqmNVju4vsR9ENxj7Zt
k8vlyOVy7j5RyjoQ/m8OkiSR6u+n0uT9D6kqvUNDWJbF1sI8v7l4HjkU4sdv/8bOzs4xzHZ/
BArgEJAkiaHzF5jf2qFQqRAPh3l48ya3fv+PZLPZfc+1bZv7d+5wOhxiMpXgw/GxhpiAZdtk
CkVqlkUmluTSZ5/T1dWFFU+wsLHJeiZLulhsOvbi9g5VyyE0Nk7P2da0s3K5TKFQcAON4p78
1nIzOuVBfQr8rh1xz/5j/K6OVktzr9A/7PJ9vziE4ziEQiE3BnDSXCRe4S6S1QQk6XlCm/d+
vJVZvcf6IdhFBxkqAV4c4xNnycWT3Fpc4uHSsvtbRHWd/PIym5ubJBWFVCzG4tISfY7No7t3
j3nWexHUAtqFSKLxv4QCtm0zNzvL+sI8ZyI60u45T8pVLn/8CalUql7Z8NkzRsfGXPaB4zjc
+vFHRmkuzIqVCncXFunt6SExMkp68Rmq40AiSffgIGatxsbTx5zbDQo3w0omS2ryHCOnGoNd
jlNPJBL1YprBW7hNnOO1qoE9vmj/9wZ7XTeCx+4N6PrjCs3gZxXtp3hauX2850UiEdeNchJp
ecKFI8tyw+/ULP7j/61a9S+u1Wqoqtrg7gpWB0cP8QwWCgWe/PA9CaWe7JaRFPSODmLbm6Ri
MW7PzHDt9Glm19ZJTZzlnKcP93EjUADUf8h8LseDn26g6zpXv/yqaXDUcRxmZ2dgfpa2XS5z
ulAkU6tx8bd/x/raGuUnj8hbFhOffUFHV72Ew87ODs9++I6h3QYSXli2zZ8eTzFy+jQ9tQod
Hlrcs0yWIhJnk/GmNYW8mK0YfPzb37lzrVarbn0Y/30Iq9JL7fRbkwcxcbzjwd6aQl5rv1Vg
+DDYLwjub17fbNxUKtWgyE6aH9ZxHEqlEpqmuSW6oZ6wJWr/+Gm4guUjXEf+exZlM05arONd
hmEYZLNZTNMklUrxw+//Nz26Tp+nF4ht2zxdXeOzf/8fTsxK9L1+QhzHoVKpcO/WLZ7+8D0T
sQhDisSDmzf3HGtZFg/u3mVtbq6hHGx7PEZ3JMzGxkad+iVJnO7sYPrmz8xM1ZtEtLe3E5+Y
ZHEnvWdcRZY5fXYCqVhoEP6SJDHSluJcKnGg8Ddtm1hHpyssc7kc5XLZdRP4rWVvPR3xPXiP
8T6w4pyDrHZ/DMFfNtofIN4vXtFsLi8DUX5AzP0kCkTxewhXlbh3XdcJhUINAl6S6lnNuq5T
rVbdjm5+nGTK67uKUChEd3c3/f39VCoVkppG367BJ555RVFoj8cotnDpHgfe66fEcRwe3r2L
tL5Klx5iu1jEsm2qhfyeYxVFobi9zSldo1g1MD0vnizLWLUaiiwjy/WXdTyVQFpcYHZqCkmS
GBsfp6R4rM/dl3oxm6N3eATdft5I+yCr24/lnTRju40uhH9YjOMXzsKH7LXMvZ9bCfv9BLE3
+Ot13/j9+c1cTa2Czt79ra59EKXU39PgpApFXdexbdv9XyguTdMwTbPhtwqHw267RT99NMDx
w3Ecdra3Sep7LXzTtikjkUwmj2FmzXGy1sNvGLIsM3r6NLXRESqlMqlwmJ3NTSZHR/ccK0kS
565fZ2t9nXgsRjqTJre+Tp+moKsqOzs7nDp9mvX5FJValbCm1bt/7dbbUVWViStXWbh7mzZN
JS8r2LaD3N6JruuEVY2aaWLaNss7ac70Na+N4n/ZJUnCVFQ3vd6f2dtMOPqDta2yRlsJc6+L
yCtYvW4g73XFMf55NHMP+YPPLyLcmt2nYRgn0vfvhSRJ7hzbdssLiDpAQpl7g8Hi+EqlQrFY
RNO0hnIMAY4PpmmyvbzEWCxGoVKhZtmYtkXVAa2rm4nJ8yiKQi6bxbIs2trbjzU+814qANu2
2dzcRJZlOjo66g2jF55RzqSRTZNkWxspTxE1gfaODto7dgu8jYzgOA43/vgHzug6xtYmtVqN
9oFBpm/+zMX+3rqA9wjXnv5+ku3t7GxvM9zd7QpeSZIojIyxXiiQzWaJK4cXfqZloSaeWxSh
UMj1/7eyjPfj4fuP8woeEQwWcxPbDiOwW/UO8G/zl3s+DPuo2WfArQAq+PQnGd7vL5fLNcRW
xN9eRSZWN97qoEGg9/iRz+fRyiW2bIvI8CipRALDMJjo73cD9o7j8OThQ5bm5/nX//E/vlJZ
7lfFe6kAHMdheWGB/MY6g5PnyE09oTcWI5JKsF0oovoCNM1eroX5OYrZHB3DI2RXFgnJ9XT9
7p4eNhNxVvIFLFXj9NBQAxsjHA43JGzZts329jZSKMSFa9d4+OuvdOfrD0rZqDG3vs6F4cYy
EwDTuQKyLBPt6GBy8jkFVJLqCUFe108ztBKcXreRt968v74+1K2d/SiYrXAQbdPvFmp2zn6C
X3w2TZNqtUooFHKTwBzHOfG9AMQ9aZrmstOAhniAcAOZpumuFESJ7wDHh0gkQjUcZfSDD+js
at7HQ5IkPv78c658+OGxB4PfSwWgKArtXZ0UtjZZnZ1lsi2FvGtFbebzTPT1NRxfqVTI5bL0
9j7fvrW6ir2xTu+1DzGHx+jUVDdd/OznX5Le2WH5yRPuf/s3FE1jcPIcI2Nj7rZ3l68AACAA
SURBVAst6KblcpmZn2/QFdK4OzeLnUii7Vp3U2vrtMeaWwdaIsn1zz9vKkxFcpBhGJRKpT37
/IHDg1YBXreM6EzlbbBylJanUDYHzasZ28h/Tq1Wc4WkKOVx0oW/LMskEgm34FurXAh/rKdV
Ub8AbxaRSITPf/e7hm2maVKpVMhkMgwODrq/03ELf3jPFECxWKRULNLd08PYqXFGRsf4+a9/
aThGje9tSWdZFj/8/vf85h/+Pe3t9cj+1U8+datM+o9PJBLMTk8zEg6hJ6I4wPLWFiNjYxiG
wc2//oWunl7OXr5c70tr1xvBK6UyO6rK4uY2KT3EZj7PpeHm5R32a0HntSB1XccwDLefbjQa
dZPCoLnl7KWI+sf1VgJtVkr6qISQn17aCq2YSmKOmqa5pZFPuvCH53ELv+CXZbkhqF2pVFy2
j2maJ7bPwfsO0zSZn5tj8fFjEpLD+sICA6dO0T+wt7XkceCdXy+KgkzLy8s8vHObzbu3WH72
zPU3X/roYxbyRVbSGWYLJSauXd8zRiQSoTOV5NnUlLtNURSSyWTLl+7CpUtkU+0soDBbMejf
rRZq2za6YWCvrbC5sYGiKER6ezFMk0Q0Qm17i0oiyYOtHa6MDCNLErNb26wVnlPHitUq7X39
Ta8rqK21Wg3TNIlGoySTSVRVdZNWvOUQBCvITxkVViXs5dkL698f7D0KCCXTKvGs2fH7QVj/
Am+DkBRC3asE/IZGLBYjlUqhqiqqqp74QPfbCD9z7UVh2zarq6uknz7hYncno93d9GEz/+uD
I5zlq+GdXgFYlsXDu3dw1leJaCGitk0sEqHscYvEEwmu/4t/SaVSIRKJNLU4FUUh0TdAcWWJ
SmXXaj8AmqZx4cqVPdvD4TAdExOsz8wwmkjgOA6nz1/g/p/+wERPN6dTCUzL4szQgMv/d4CV
coW7c/O0p1Jc+OhjTo+PN72u4Io7Tj0LWFT9FHRCaHSfCLeO+Nys7o8/yOj3v/uPawYRiPXH
E1rB69rZ71j/7+U/3rZtt1haNBp9KwSlWLV5BZD/Pr1uhMD6P3qI90dkkrc6xjAMNx7j35fN
ZJi7c5uJ3Uq/UKeCdg8fvl/C68Y7qwAcx2FpaQl5a5OBzudlFGazeT6enNyTGHUQje7C1as8
Vg/XTNyyLFZXV6iUK4yOjTWUl5AkiVMTZxk7M4HjOMw8ecLm08eMiqQRQPM9cOOdHTiA09nO
SjpD7AAesXAjiG5R3u9E7G/lN/fOs9UqwD9mKyqnd4zDWlLN5nLQcf778//tndfbABEHKJVK
DfWbmuGkZTa/DohVaq1Wc+s6vW6Izmz7uSANw+Dnb78lkkjw4Sef7Dn/yf37THR2uJ0Bf332
jPVShUHLwZYkTp85c+zstHf26anVaiz/ep+z7W17tgNuCz5/c2yh1VVVbfhxQqEQl69/2DBW
KwbKysoKm3du0RGP8fOvDwj19HL1k08aqHvlcpmVxUVYXmSiuzlbQECSpHr3IUmiMx7jhz//
idPnznHh8pWWwiEUCrlWpNeq91riYv7eksPien43kL/JSrP7FklcXreQVyH4BfRhrdaDmEzN
IGoRxeNxHMdpaLryNkCWZRRFcVemb9PcjxLit7v7yy+YWxs4isalr76irQlN+yhxGENPlmVU
Xef6xx/veZ5z2Sx2NoO62/Mb4OLICBcch518ARaf8aRS4fzly3vGfZO/9TupAEzT5PH9+wzv
WvVlwyBTKNDf0YEuS1QqlZauANu2eXTnDqqmcskn8KvVKqZpuqsFUchL1GSxbRtN07BMk3hY
Jx4OczYcxrJN7t38mckPLlMsFgmHw/yP//7f6UvE+aC3u+Ea+7lRACKhENf6eljd2tr3O5Ak
aQ+bpFlVSL+17l0BePn9reboVRbCZeHlO4sV1puwvoWyUlWVSCTi+sfFtuO2tl4Uov3j+yr8
of4u3799i/ZKifa+PhzH4dmTJ6Q+ad3u9E1B0zSufvQRgEubFtDDYaQW705nMsFWvkCyo4Mb
338PTr0MiFmtEo7Hmbxw4Y25Kt8pBSAE0dLiIsrmOpFU3VWymsli2A5Jw0Bp78SyLAqFAu2+
LDzbtlldWcHZXKfQxAJYWV5m5d5dznz6Kd29ffWa3xsbrD56iB2NYufznP34E0bHxrizvkai
ZqCpCoosE85luP/nP6JLUJYV9FAIi3oxONnjHxTun7JhUChX6EwmqBj1tpKSJIEkUawaxHv6
DvUCCNaOWPk081V6j/N/l4dxyfizhJtt87udDpOI9qIQL6Dw36ZSKXdftVp96yxpkdPxPkI8
sxvr6+wsLjE2Wu++JUkS0iEJAm8CIt4mVpzpdBpVVSnk89gtKLy2bTO9tc1Y9w56Lkt/Wwqr
VkXTFLLpbZ7++iuXrl17I/f4TikAy7L45fvvCZcKDKae+8mtcISQprFcqnD1N59x74fv0UtF
lvv6uXj1muujtyyL+Xt3mezsYH57xw0CCURjMcKqwoMbN7j+m99y79u/oaVSdOghUiEVrbeb
uQf36Onr49yVq/z6/Xd0mTVkSSasqvTs5gnULAs1HKFrZJS1dJry1gaRZBumA/FCEUWWKSTb
iPYOsJLeIdI3yPbsNEPtbaxks7Sfu8jgcIt2dD4Iy9w0Tfch9WYgC3qolykj9nn/F2P5H0rv
tmYduvzjeT+/ygO+XyBabPfSX9/WBKmTIuheNyzLIpvNEg6HURSFzc1NNlaWMTc3Od//vJ1i
oVIhOTJ2fBP1oFqtUq1U0DSN8K6c+OWH74nbNhFVZbyFa1eSJCY6OwjtbBFrb0OWJJfw0RaL
sbG9yfzs7JH0Mj4I75QCADAyaU53d2Lu+rqn19fpufABfQMDFItFZh49ZECViXZ1sri5we0/
/ZGhixcZGB5BVVX6z0ywszhPXyLO4vwcZ3azbGVZJhKJsJLN0ReP8ejePaKWSa1cImuadCfq
lTyV3ezTaDTKla+/YWF+3hV261NP6G2rW6VypUx2e4urn3wKPH/RNzc3qZbLnB4ebhBmd9Np
liyTnkuXGRgcOvSDIcsy8XjcLdgWi8VQVZVyuexal8JNYhgGlUqlgRXkRasYQKtVhB+HmXMr
FlIzxXPQ2CIJLhwOEw6H3xth+rbBNE2WFhdZunObsmWBqtIbCdMZiRD19MHIVCrsOPBxk1pd
bwqiRlOtVuPRw4dM37/Hp7/9HeOnT/P04UOMahVHVRjq7Gg5hnADtUJPMskf/vxnjGqVydfc
O+CdUgCyLDN6+QorM1PMb25zqbsTfeQUkViMG3/7Kx9+8SXV1RWiuz/O8G6AeOH+fTq6e9B1
nZ6BAR48fUxnLEZmaZFZVWNraYlLH31EPB6nf2wM2zQ5fe4cM9/9jZFImEzxOa1U3aVcAqia
xuDwMJFIBNu2ufH0Cb3ARi5PeGiEix98sEcodXc/jwl4Be3Vzz93/fkv872kUik3IKxpWlPq
mq7rqKpKrVajXC4fSPNstiJo5QI6LF40MHxQYBqC8sgnFSLA++DePR7evsVnZ87Qtpv57v0d
C9Uq2zWL8atXOLNb9vy45nvrl1+YvX+f0e4uEppKKpmkWq1w99Ytwpk0V3t7KFQq7vH+ezks
Jvt7yayt4Zw//1rv951sCCNq4T+6c5uxyXPM/XwDKRwm3tNHZGONeCTcIMwsy2bZgWtffc3K
8jIb9+4w3N6G7TjcXnjGxYEB1pD46De/xXEcisUi048f0Z7PEvPlBKym0wx+9qWbMVypVFzr
8+6tW3QVsuiaxk6xSLWji0vXru9xs9RqNebn5upVA3d2COkhJi9eanDdvInvsFknsWYU0mYP
up8OetRoRvNsda2DkvYCvHk4jsP29jaPf/mFNsmhLRol5OvGV6nV2KmZdIyfZnB4+NiUuHCj
5nI5fvrhB5z0Dh9NnMFxHO7PLxALh2mPx+hoIUdfVBEYpsny1jYoMue++e1rLR/9Tq0ABITf
/uOvvubxo0fojkNqbJzVqaf0pBJ7fNSKIhNKZ5iamqK9rY22yXNsT0/RmUxwfXQESZIwszng
eSZsZm6uXjyuUsG0YbQtiSLLqLJCIZ8nHA6Ty+VYXVzk0tWrqKpKIpWisLWOrml0xGLMrSzz
SA/TP1BP+gpHIiw+e8bWwjyd1OmUvapGrZTnpz/9kaGzkwyPjb2R71AEtyo+a0agVZKWl010
GOvcj2YupGbnvcjY3taUAY4fwoi69d23XOrqdGtfCRSrVZ7l8oycP8/54ZEjr5lz2OfRNE1y
2Syz09MU02mitsnZWJR452n3/Munxo50blDPA5paW8OwbD58zSSAd1IBeHFmYoKVSJiOrm6W
fr2P4zzvulWqVl12TW9biu35GVZMC8OyGGl/3s0HQI3GyGTSFHN5BoaHGbl2jWgsTk84zONf
biIepQIw0tVVDyj/cpPhRIw7f/sbH/3ud2yurTHqKf3aHYuy9OgBxZkpFFWlrKj0KjKnohGX
GQQQQuWsrrP65BHReJyu7kbq6OvCQU3Zmwn7o8KLjudVCGJeXotRuM+CWMDxwnHq5a4f3LnN
6WSyQfg7wGI6Q2p0jC+/+ArlNSW55fN5bvz4I//yX/2rlseI3IPK9hbj7W2E2l5+Bfkyz/KX
5yZ5vLH52qnL77wCUFWVkbFTlMvlOtvFslAVhbJhcGNugW/OnqFQrhBSFWQkBtv3JphUjBqx
zi4e376DlU3T29/P+JkJoP4wSYU8cqy+6rBVjXA4zL1btxiKR9E1jbZqsU4vrVZQI8/5vfFw
mMmBAfcBsR2nQfD7EVEUioXCG1EAklQvKeGvG+T929twXJKklpb264gBHHS8mE80GnXdaiLB
720oCvcuwrZtcrkcv96+jZRNE/aUS5YkiR+npvn63/3Da0/ysiyLoqf/sheGYdRpmk+e0FYu
0dbd9cLPpGDbedGKtdYKsXCYjtf8PcB7UAxOIBKJcOrahyxJCnOZLAu5PNe//IrZao2tWIKf
l9dQdxuxmLbNdj6PYZrULIuFbJaRsVN09PaiJVMNTV4ikQhSNMZ6JsvC5iaRVFt9ibu5Tnh3
6doWi7Kxvk60vR2jBd0S2Ff4A2wZNfr6mxeBex0QCVUHUT+P0qK2bXtPAbfDohn9tFKpuL11
dV1/a8pBvKv4p3/8R2pbm0z09xPaVcSWbfPj1DR//3/+X69d+EO969p/+E//qem+crnM//Nf
/guV5SXa47GXfrb98QpR4PCwyJRKDF+89FLXfhG88ysAL/r6++ndzSas1WpsbW7iVCvEKmU+
HxlEUxQWcwWig4N0TV5ga2sLVZH57POvUBSFifPnwReVV1WVD//u7+udvOJx1185eGaClZlp
+nfzERzbYmj8NIs/fEdfWwpFlnEAXsA3rdgW5UoF/RDF6I4CYhVgmmZDIpk3mcsrUA+igR72
mt7/XwSidIW7otr927IsQqHQe1E356Qj2d5Ou1Vr2FauGoQ7uxpybl4nWtGKN9bX+X//63/l
XG8PI7u1uY7iWl4068fhx3a5jDY4/EZKRr8zb4QQPEJYtcr6FD++LMss/PqAs7u8fNtxeFYs
ceGb37hJHf6OPq2EkqqqdO4WnBMdqEZOnyHX3cP87VvUqlVOXT9Le3s768OjLORzdJRKlEyL
nZrF+faka/0L/7XlOMxv7zDcliKkqhQqVZSOzjdiIXkhSRKRSMQtSiYYEd6m5LA/C+dFr/ey
gtp/faEABCvsOFvvHQWEwn1bKa3FYpFiLkdbuO4GtWybufUNNkplfvcP/3CssRnLsrj1008k
QiHODx8+z6YZHMdxqcfe96NZjkvDecB6vkAlEuXqqVMvff0XwVtPAxVp/4sLC2xvbmAXi2hm
jXhvP2evXkXdbavXTDjNTU+zM/0U27IId/cyeeUKoVesweFt/7gfVlZWiMdiSLLMzL27daGq
qKiKTMUwCMfinL14kYWZGaqlIu19/fT19x+LFStS3P1+fm8QWAimVmybwzIvXoU77ReQIutZ
FIV7G0pB7wdRa+ltXMk4jsPszAwPvv+OLybPAvDw2SJWPM4nX31N/JhlkG3bzM3OMnPzZ66d
Gnvpcfwu0cMIfqgboAv5AiOXPuDeTzdIaBqDFy4y8ppZf2/fk+SDJEksPXtGdXaaifY2pLa6
y8Wolrjzpz8SHxqmUMhjGwbnr14j6akPc+rMGUZ3061f1foQP7RXAYhyBIXdgFN7e7u7b8Cz
vLv65Vctxz178eIrzesoIB5gr+D3BrX8ReT8aCbU/VVDBY5iBQH1aqimaaIoCuFw+K0Umn68
bcXsvDBNk7u3bzO5Wx2zYhjEoxHGP/3sWIW/N4vdqtXo6WidwXsYeKvnesc/CCu5HOc++4JK
uUTUceiLRam8RNLni+Ltfyuo1+ixlEbNG1JVTrUlyW2soTk2qWiU2Rs/MP7p5w1K4FWW00Lo
V6tVSqUSM/fuUiyX+eZf/5t6QahCgXvff0e0ZuDgMBdPokSjJNvbOXX6TMO1hWV91EHVo4Ao
Tey3ZA7Tu9cL4Y/fb6XwKvAqpVqtVu+2tlsVNMDxwbIsHj98SK+mIuTh/YUFSKS49oZdmn4I
g81xHMYnJriby2FaNbeG/6viMApgs1TGiMVZXlggFIkw+cWXrC4tcXly8kjmsB/eiTejvaOD
dav5MisZfR5YGojHmP75Jy5+/c2h3QGmaZLP58lmMvQPDDSc5zgOD+/dpbSywmomg1Mpk4gn
mHn0iLOXLjH79Anj0TCaWs89sG0bq1phY+opmc4uOjo6XF703JMnlDJp1HCYC9euE4vH683o
s1misRi2bVMzDNp28xNETf83BRG88gpuPxVUbNuvPEQry/8ooKqqW/JalL2oVCrE4/EDzgzw
uuA4DtNTU+TmZhnu6CCih3i8uEjNdvjm66/feDxDPINCMNdqNdLpHWpGjaWnT1AsCzMee2UF
cJiudwC5cpno6BiZmWkqmTTrls2lL76kUCqR3tmhrb2dcrkM1Eu17GcgOo6DaZrs7OzQ3t5+
qAS6d0IBaJqGYR+saWVJol8PMXXnNhc/+fRQP9D62hrLd27RGQ7zcGmRK19+5VoMuVyO0rMF
Tvd0M7qbYaypKvPbW3Uq6MYGaur58rZOBcOlhzqOQ3pnh9lbN+nXQ+iJGLlyhY3NTZLVKrO3
b6EbVUq2TTUcoc2o8siykGSFUDzBhQ8/fCPLZ1mWCYfDVKvVBjdQM+F/mLHE/0dNydR24z2C
Qvqi1LsArweqorBTLNKbTBDRQ0R0nVQ8QeoVrH/TNFsq91qt1tCFT8BxHOZmZ9laWaGaz+HY
NrLj0KbX38eJIy4Xst/zXbMsnuXydA4P09vTw/raKgvr61wbGWbx559IyDJ3bv1CWzKFkUlj
VatIoRChVApVCzFy6hTtPneVYRh8/5e/kKgZPNU0Jq9eIxKJoOs6mqY1vbd3QgEsLizQGT5c
urhpWxQKRebn5xnwWfQNx5kma2tr4DiEdZ1ULEp2J02tVnPPqT9k9eOFxVAyDDqH6qWamzXz
cByHQijMZEcHlUqFJ7/c5HSs3ovYtCzysThKNsPa/XuMd7ajxqOUqlVuPFti8tQoQ6KrmOPw
8Mfv+fhf/Ks3shIQZZVb3dN+Vok/b0CgWe2gVm6w/YrLicSbcrnc0DLQ3+0twJuH4zjEEglK
5QozK6ukYjEcReGDjz5+JeU8PzfH5uNHRHt6ufLppw37Wrn8LMti7sEDLnZ3oexTrfN1w3Yc
nqXTXPrN76iUy/z03Xdo5RKfnBpDU1Wiuo5pWTx49JjBsVEGkwkkaTe2aZqspXdYDoX2KADb
ttErZUZ6uikbBj/8r/+JlkwR0nUGR0Y4d/Hi3nfnTd3064LjOGysrNB2CIrfSr7Ao3wJo1ig
/OQRD+/cbmi87W2fmMvlWPz5Buv37rCaL5AplrCjMUKhEI7jUCqViMVitE2cI1ssutdYrxh0
9/XXx2wie9KlMgMT9Szihbk5uuXnQnEpVyDV04uzuszZni5XqURCIQY7OpjeybjjyJJEf0hj
6tGjl/viXhDeALc/EAyNAty/DfauEpodL47zBtRbjecdy8urNgwDWZaJxWInMp7yvmF5aYmF
mz9zdWyEi2Oj5MtlokPDeyjWL4rMzg79yQRbKyuu269Wq7G0uLjHIBGrdVmW6w2alOMVe4+W
lskj8eutWzz+4XsmomHO9fc1lMVQZJnLQ4MkfHT2kKoSVjVkSWJnZ8d9T9xYxq53IarrfD55
lmu93ZxPJSgtzPHk4cM9c3nrVwC2bSOZJnJof5/+fC5P3qgxHgmTita/1Kl8npvffoskweSV
q+i6zp2fbnD5o4+RJImQqjDa0U6PYXBjZpbP/mXd2q7Vatz8yz/T0dXF4OkzLM5Mkdot2qTb
FoV8vm59NrFwskhM7CajZTbWOeVJfpFSKZbn5jjrWxpLkkRXSGO6WM9MNi2bjWyWkKpQttfh
NdcMh0Y3kH9uXviFtJcuKj57YwH+chJivzjey6pqtSqwbRtd193fRriq3tduWicFhmFw784d
PmhPEdk1nBxF4fTZs6807traGs+WllhVFAaGhtxsb8uy+Pm7b/nyd39HT+/zJjLlcpkf/vB7
Ln/+Bam+fqrlIvoxlANxHAcHWMtm+ayri7CmIPf2NLMTkSSJnhYusp5kgsL2Jg+mniJHIsgh
HU1T2djapkd77vqSJMk1Ioc7O/l1fo4zk5MNK6S3fgVQLBaRS83regjMFEtUJYVzbUnaYs/d
ApmNDWLlImOKxNNv/1rv7qNq3P/rX9A0jZpU/3oioRAjfX309PYBu/XlLZNEqcD9779raO7Q
n0ry682fMQwDLRypU0FNk8eFEoumzZnrHyJJEoZhUNu1SgDy5TLtvX1YxUJzX52icPrcOTY1
nUJnN3ZXN8vlCp3Dw4fiGb8qTNNs6tNsZsF72UFe4e+HiAM0s/K9CsH/z389WZYb5idJUlDv
5wRgfW2NSKnodrsqVauYkegrKWbbtpn+9QHXuzq42tXBQK3K07/9lbnpacLhMF/89nf89Jd/
xjAMN0fIcRwSiQRVw6BmGO58jgPLW9tcGhoiFgmjyHJT4X8YxMNhzg/0M9nexulomFFN5cO+
HkY8DXS8kCSJyG6fDy/eagXgOA5LzxbojrV2/8zupNHbOhjR1T1lZ6+PDNGbTCDLMgOJON/+
6Y+sLi/RrSnMPPwVU37OBAjt0j2hLrhOX72OYdS40NlO2CNsJEniYnuKX2/fJt7VjWGa5Mtl
Tl/6gGtff+P67dI7OyQ9S9GorlNIp9H3SYd3gInLV6iUy/QaFT7s76M2M8UP//N/uLkGrwuq
qrpCdj9XDxxcvtmrGLxuHu84L5L1KsYT9X5E97MAx4ue3l5yVcP9vFMo8uErNnO3LAuKRWLh
MGFNQ1UURjo7yGxtAtDV3Y1VMymVShSLRX74/f/m0Z07XPnyK0ZHR4knE9Q8bt/D4igIC5Ik
Mdzd5XYFPCrIu8+/Isst64mVq1Uerm/s+e7faheQZVnsLCxwrqP5UildKtM9MUk2myXUJDDk
TazRNY2P+3vdL3B9cxM1FnMFVioaYXNtDZE13T80xK+bmyytrzKUSuH9XlVFQdM09HCYas2k
aNqM+QI26e0tUpHnNX0UWcYoFrBaPGf5apX1J0/IzkwRUhSiuw9RVzJBm2Ux8/gRlz/86LX5
vP3BXC/8Fr/f3y8+eymgInDrp5U2CwI3Uy7++IBo1afrehD8PQGo1WosLi4y3NlOSFXrv7Oq
kHjF5iaVSgXVabLi3X0ULMtC11TKxSKlSoVMLkcxl6O6vka0r4+zV66yYFksLi5yprPjwAKM
DZc4wMg5arxKVrwfiqLw6dgI2UymgTn1Vq8AhBAwW1h7uUiM7oEBCivLh1r2eR+GqCzhqCqV
3QBTIhIhs7nh7pckiUvXrzP+xVcs53J754ZDR2cn95ZX6Dh7dg/bqFqp7vlhDaOeMNb0Xh2H
3pDK6c4Ohn0WhCLLsLnB8tLSgff4smgWxPXu87tnDsoYFud72zX6z/Gf22xsv2VmGAaGYbz1
ZR/edjy4faveD6OhdPmru+Y2NzZo91E/K0aNVHc3xWKR+7duEdVUqobB5tIi/WOnGOjq4uzg
AD2Oze0//4nhU+MMnj9PplA8tGX/unJX3tQ1F7e32db0hmrClmW93QogFArx4d/9PWuSQtEX
nDRqJrG2NrY2N+k6JEXUi1RYJ729g+15QMxcdo9rIZVK0XXuPJlS3bdm2TYrxRLDo2OsPHvG
cCpJOp3Z46cP6Tp+WR+xTBxV21MyGmC4o71prwLYDfbIMltbm2455aPm2AufqqhF4xXagm9/
0MMquNmtMoib5RZ4t3uFvnD5NFMCtm27zJAAxwOrUuHy2Kjr45YkCRVeyVVp2zYbK8ukfIy/
7XKJrp4e7n73Ld1GlUgszvbaKqOailosENHqq/+QqnKmq5Mnv9ykVCpzd3WN5XT6heZwHIrg
KDDY3s7szAyZTJ1J6DgOmxsbb7cCgDrX+8oXX5KJxKjtCs6yYbBeKjE0MsLo2Bjlji6ypRKF
SpVnW9tYTYKm/h81Fg4zHg419PxVdks++DE4OsaWXQ/2LjsS459+jhoKUVtbYbSnm1QuzfTj
xw3n2Ja1hyY6lEqi1Qyebu0AL+Z3nFpbpzQ3y/TUFD//5S88uX//SIPDmqahqqrbI6CVb77Z
C+KPF/hXBmIl1+yfGFP87x3Ln/DldQ9Vq9U3EhwP0ByJrm7uzS/w67NFMqIWVizK1traS41n
WRbra2uEioWG1bxl28ht7RQLBWKOQ0QPIZsmbd097JRKjLal6PYkSyqyzICmEtpY51RHO9ul
crPLnQg0o0m/LMKhEIPJBGGPPFuYmXn7FQDUBcPo5DnWcnnWiyWqvQOc/vxL4vF43VVz9Rrb
4SjT1RpZ2zlU5F2i7l/3QpabM1okSeLs9Q/ZCkW49MmnhCMRnt6/R1+85QSSHAAAIABJREFU
znZIRqMUFubc/roAQ6OjrFZrLKQzpD1KJW6ZZLPP+f6HfQC6ohHO9PWy9fghw5qMtbLE5ubm
oc49DBRFIZFIkEwmXa696Bss5ukV5F40cwN5VwFe696LVjGCZkoimUw2xHRepqFMM4iVz9sC
f6D+uOZ+9vx5UqNjPF5dZTOfx7QsQqpKfm31hRWz4zg8m59n5f5dhppQIyWkekXfXfeSQz0b
vNbRxf21dRa3thuO11QVW4JKJEpv4uSWCTnq1cZkfx8ri8+A3VVyLofyn//zf/6/3wV/aTgc
poxEz+nTDA6PNDRNSafTbE8/ZSCkMZiMv3RVRceBWjhCqn1vs4hINErv0JCbLfvs3l16PA+X
ZZrUYnGSu0EwPRzGVjVkYH5rm4SqYNo2i1tbXBoZRtut9XPYB6BrN429MxajWDXYdqCQyRBJ
JgmFQkdSEkGSJEzTRJIkt7eu1YRR0YquKf73tsxrFjRudp5/v7fMgyzLbgawaFwjSZJbO+Vl
IRID33TdpReF+F4qlUrDCjWfz7urpjedFCdJEt09PVRKJdLFEp1hHV3TCDkOG9ksqa6uQ/82
tm3z+O4dxpOJPfcgSxKUS9ixOIVajbBl0hmPU93ZxsxmUBWF1XyewbZUw7nL2Sx6RydOoUAq
+mYa0bxJNCNsaKpKIZ0mY1SxHSgvL759CqBV31mA9s5OIpG9lFBN09hcXUWzLGq7L3W2VGan
XMEwakR3fckHIRzSWFtdRYrFiMXiLc+RJIml6Sm6PA9WSFHZKpfpHRx0j9lYXUXf2WY4Ga+/
HKpKb1sb2hEUorIMg/TONrn1dVbm55D1MPFXrHXiOA7FYpFqtUq1WnV9+kIptOLqey1/byXQ
gxScX2h5z1EUxR1HURRXAQjfv+M4r6wAZFluWlPmpMBxHCqVCpZlUalU3Kb33oJ43mNa1YN5
XVAUhZGxU5SKRZbX1ihXyhQrVbbWVsmWSvQNDgEHs1wkSWInkyG9sd40419TVbYrFUbOTLA6
O0syEiEcCpGIRGiLRuhJxPcUd1vb3mFrYx1Llul9i/uhtEKr7zSqaRQ3N5mamuZMT/fbQwMV
Vk6tVuPuzZtc//TTQ5f51TSNK19/QzaTwTAM8rksHe0dRGMxSsUi048eMoBDLHywIhyMx9i4
fYvNzi4utqhnYts2/kWuosjo2TTr6+v07mYpjp89y93NDXptG5W62+kggTW7sUEyEqFrn4c2
qusosszc6iqXd7sbPbn9C30DA0ivqFxE4NU0TYrFomsdH+RqEFao16+/nzI/CCIYr6oquq5T
qVQIh8MkEok9NdnfJXi/Z9GlrVKpuPcsVi0iZ0W4wmq1GpVK5Y13RZNlmWuffELt2jU21tco
V6okTJOu7i4KhQLLz54xeeHCvs+AJEmMjY8zs7badL/jOMiKQjgSoWjW9uxvRgG3bZv2RAI5
FsN2nBeig76N8L5nnYkEHYkEEpz8FYBt2xQKBdLpNLZts7qygrq2zEa+QO/AgLv/MNZNJpNm
eX6e7NoK2WcLrE5PkV5fx7EsuiL6oaiikiQRD4cJGVWezswSitdXA144jsPy0yd0+RLUFEki
I8l071LjZFmmZ2iYrWqNHRs2t7ZJhkIgtdbgMhLrskq5WCKpt165ZItFwlrIpcwtpTNsrK7S
NzLy0i4wy7IoFArYtk00Gn2hhCs/bdMbB/Du95+zHzRNc1uAWpaFYRhuXRRVVd/qBirN8P+z
92bdbWRJnufPN8Dh2AES3BeJoiiJkkIhRUTGkntWdWZVzUPNnKzuOf0w36Pf5ovMPHb3zOmu
Ol01XZWVWZkZGZGxSQrtC0WJ+wYu2FeHb/MAOASCABeJUjAU8T8nTlCAu+P69etmds3+ZuYy
vKA+N6VSCcMwdilW9/4NwyCbzaJpGoqi4PF4dvXcfd3uIEmSCIXDxONxenp70TQ/D+7fp7q0
iC6IROPxfceUyWQwU9v4O8iqYrVKcHSU5OoqPbAn4bMTYsEA95aWGfH7Cb7iXsQnZQe5azfN
c2bWicbC/Dw7T2fJ5XJMvvse2xvrnAmFmE8mm3S/j//1N/z0l79CURSq1Sp+v3/P1r1cKjH/
5ZdMDfQhHdDwuZvf2YVbn2ZMlZi/f5/eX9QtesMwKJVKhMNhAn39WObutPNUqczIpYFd15Ik
idON2ijFYpG52Sdk02lU6ta2UyxgAHI4iqFXUcpltN4+PIkEhe1NQl0Wb6yh5V1cHOhDEARm
7t/n0tWr+95/N7TORaVSaSqB1qbxndDu42+NBxwUA9gP7b/pOPXgn9/vf+OEv1vWoLXOvKt8
W5Ww4zgkk0k2FhbQHJvtaJSpC9MEAoGm8l5cWODipUvf+BxNnj3L7ZVlKksLPNSrDI+OdXx3
AdaWlwmJnccrCgKWaVHM5kgcYhcPdTbQ+YF+Vra36WuLD3TDiyZmvY5AfPtOuv3fncbsOM7J
VwD68iKCUcOUJJIP7hH1+RCCAfr9PuZmZ3Ech5BTt3oe3bmDtbmBLYjEJ88yce5c88b9gQCB
ROJID7obPnn8hJ6BAUI9PahhX/OcpYUFth/eJzF9kYnpizy9fw8htcNQLFq32BDIZbOIgrCr
Fro7pmAwSLVcJqJXqToONVFk8MJFhkZHKZfL/O4f/p7z195hZGwMTdO497WOt1LcU9iq00IV
RZH72ykmLg7yohAEYVdJCLfrVidWR3viVvuYDlvm4aDAcPvnPp/vjasD5Dj16rOtjKRuTKty
uUx6dYXLvXEEIF0oMnP3Dp5giO1kklohT7VQILW2xk//6q+OzU3mup6OEjMJhUK8/9d/wyf/
+q9krl/HWF2lZDt4NI1gfz9np6aaSqpWrWB1yUaXRJFaTcfRq3DInB9BEBiIxdgpljBME8+3
fM0cdffs4sS7gL5+8BDFtrnYn6AnEEBrNG/wyDK5nW2WN7cY8mvMJzeRi3lO9cSJ+TWsXJYn
i4vIqopP05AkiWhfP09mnqCKAgL1PKyDfH/pUplMqUSwpWyD1+PBQGDy8luMT0wA9Rdy9v49
zoRDlHd2KNoOU5cv4+vr5/HSEuVymfFwiEJynY3tHQbHxpvb99aHtbKwwKmgn5imEVNk1ldX
CQ8OEQwGiSb6GBoeZmtrC03TiMRibKTSeE1j106j1cJu/axSM9BNk/6RkRfalrrMG9u28fl8
+Hz1Yndu9U13HlqFfLfgcKff73bsYawZqCvQw3RB+rbAVaxu4L1V0VYqFYrFYtOt485JtVpF
TyaJNXZBmtfL8to6jmXTJ8L5wQH8PpXF7R08Lb2SX4bp5NI0n964jolAJBY79LVkWWZgZAQn
k2YoGqXHrxH1KJDP82xhgZ6BQWRZZmR8nJrHy/KzZ0QDu4vJmZYF4Qim46Ca9XeKQ8aW+sLh
Q3f/Om5a5qvEG6MAgvkMvZqv4w0FPB56PApBzUevIhNpEdIeWSYmSyTn51lcXMQTCBAMBokP
j5BxoOYPslEsoVlmxwXgOA6GZZFRPPj6BkhubeETRWRJIqiqxFQvq5ks8b66a+XB7dt4CjlC
qorPo5BOruNL9OPxeHh29y667TAQDKB5veTyeUIDg9y//hXVaoVoT89zC65aQcznmmMKe708
nnnCwOnThMJhUjs73Pzzp5y9MF33c/t8PHv6dE+8odN8eSSRbKVKz9DQC1vJkiTh9Xp3MYDa
ueetSu24XppubiQXmqY1A9RvAhzHoVarNQWzaZrNoPnm5iZ3b92iltxADgTRWqprZrNZ5GKR
UKMeUqlS5en2NleHBgj7/c0YVtSnsvT0KdWtLRafzpLNZIkmEi/UP9m2bR5d/4rJWJSN5SWk
cKRZb6Y1K7t1t+HuIE3TRFVVFtbWCQk0DRlFlknt7PD06SyyTyMUChEIBEiuLBFulP52Ua7q
+Pr7qZRKZDMZsqZFRhApZXMEfeqhWEZvGt4YBVDbSuLsk9RzUHOHoM9HzKOw0VAEO8kNqltJ
4gODBGMxCutrewJLumGwZVqUQ2G0SITsxjp9E2fQPR620mmypTJZBM5cfqsZbMxnM1ilIl5R