
Arion control plane
Futurewei Cloud Lab

2/2022



Background

• Technical trend:
• Elastic in both networking functionalities and cost
• Thinner host/agent or even baremetal, offshore networking functionalities
• DP-triggered or DP-like CP, for example session missed on-demand lookups

• Realistic challenges
• Host/ACA’s growing rules and resources

• Relationship between pushing static rules and dynamically lookup from upstream
• NCM stress as a central lookup service

• On-demand roundtrip latency and concurrency
• Some features may fit better on GW rather than spreading on each host

• SG
• GW brings more coarse-grained control in aggregated traffic

• Rate limiting (ingress, egress) per VPC
• QoS adjustment across multiple applications per VPC, or per region (cross VPCs)



Scenarios and workload
Phase I - target and constraints
For each Arion cluster
Target support:

Compute Node: 100K         VMs: 2M
VNI: 20    Flow rules: Neighbor rules 
Mapping rules: dstip+vni -> CN IP,  total rule capacity: 2M(?)

Arion Master capacity: 
256G physical memory, 1T disk

ArionWing capacity:
100G Nic card, 32G physical memory, 512G disk,
12(24) ArionWings
Multiple eBPF tables in each ArionWing, each ArionWing covers rules for 
25K cn/500k vm(or 12.5K cn/250K vm);  sustains multi ArionWing failure 
and leaves space for complex rule handling(e.g. ACL, SG, cross VPC, etc).

Target supported throughput capability: 
1Tbps(2TGbps) throughput and sustains temporal multiple ArionWing

failures.

Notes: If we use 400G Nic card, the capacity increases to 4Tbps/8Tbps in above calculations.

Notes:

T =  total Arion Wings(min 6) 
N = Arion Wings in each group(default 3)
G = T/N, total groups(min 2)

1. Every N Arion Wings form a group, 
which has the same flow control 
rules;

2. Total flow control rules are sharding
into G subsets.

3. This is 1/10 of the designed 
deployment, which could have 
120(240) Arion Wings with 10T(20T) 
bps throughput, or 40T/80Tbps with 
400G Nic for 1M compute nodes in 
VPC.



Roadmap

• Phase 1 - End of June
• Achieve hover-board GW scenario (specific feature of vpc neighbor connectivity, and limited 

traffic)
• GW eBpf top-down programming

• Post phase 1 (phase 1.5) - End of September
• Performance (clients, qps and latency)
• 100M+ metadata, for vpc policies (phase 1 is neighbors) that offloaded to Arion
• Sub-ms session lookup

• Local lookup definately less than 1ms
• Remote lookup, around 1ms, best effort to achieve less than 1ms

• Phase 2 - End of December
• Reuse/extend the framework to manage much higher-throughput and much higher data 

volume GW units
• Enable a stateful scenario of GW



Arion Architecture

eBPF Map

XDP/eBPF

Arion Agent

eBPF Map

XDP/eBPF

Arion Agent

eBPF Maps

XDP/eBPF

Arion Agent

RPC

ArionMaster

User Space

Kernel Space

DB scheduler proxy 

DB write proxy

ArionWing ArionWing ArionWing

P4

Arion Agent

ArionWing

P4 Switch/Nic Linux like OS

• Design philosophy
• Phases

• Master + db
• Provides reliable data persistence 

and high-performance data lookup for 
GW data

• high concurrency in different types of 
jobs

• Communication (master + db <-> wings)
• push GW (eBPF) goal states (#1)
• reconcile/restore (#2)
• on-demand lookups (#3)
• close-loop status reporting (#4)

• Near-target lookup, but with fallback
• Push down the function of cache and lookup to 

Arion Wing, if need to guarantee <1ms 
response

• Best effort to minimize roundtrip latency 
between ArionWing and ArionMaster/DB 
channel when query remotely

• ArionWing (with eBPF) will decide when query 
locally and when query remotely, the criteria 
and percentage between them

Hazelcast / DB

DPM

scheduler storage

sqlite

Vpc metadata

GW metadata

Phase 1
module

Phase 2 
module

1 & 2

4

1 & 2 3

Phase 1 workflow

Phase 2 workflow

GW state 
converter 

4

3

1 & 2 3

sqlite

Agent / local

Central 
server/service

User inputs



Hazelcast (as vpc DB, and can be replaced with other DBs)
• Storage – vpc metadata persistence and lookup, for Arion phase 1 the table that GW is interested is vpc neighbor table (which already provided, doesn’t 

need new table or new metadata format)

• Job scheduler of db query, watch, get etc.

Arion master
• Rpc

• The only place to write to DB is through Arion master rpc call
• Includes

• For DPM to write vpc metadata
• For Arion Wings to report programming status

• Communication channels (with Arion Wings)
• DB notify

• push GW (eBPF) goal states (#1)
• reconcile/restore (#2)

• DB get: on-demand lookups (#3)
• Call rpc of Arion Master: close-loop status reporting (#4)

• High concurrency job scheduling

• Reserve 2 wrapper layers to hook with general DBs
• DB write proxy, implements writing functions
• DB scheduler proxy

• hooked with DB internal callbacks
• to implement an abstract layer of notify functionalities like watch and get

Modules

RPC

ArionMaster
DB scheduler proxy 

DB write proxy

GW metadata GW state 
converter 



DB

• Goals
• Stores entire region vpc metadata

• Vpc neighbors is shared (stored only once) among Alcor/DPM and Arion, so Arion phase 1 (neighbor 
rules) doesn’t need GW new table/db-schema in Hazelcast

• Performance (clients, qps and latency)
• For regular notifying and syncing vpc updates (version by version) to Arion-wings

• < 1ms
• For Arion-wings reconcile

• New slice deployment
• ~1G data, < 10 s
• ~3G data, < 30 s

• Arion-wing crash and restore, will trigger a series of version updates
• For Arion-wings on-demand lookups

• < 120 clients, 260k qps, with <1ms latency

• General DB to integrate with
• Need to provide hooks of

• watch (new records, or record updates notification/callback)
• get (query, wrap around and reply in high performance manner)



Arion Master

• Deploy 1 (service) per partition
• each client connects to master is a gateway node
• Depending on the throughput capacity per gateway node, the client number are 6 - 240 

• Goals
• 100M+ metadata, for vpc policies (phase 1 is neighbors) that offloaded to Arion
• Sub-ms session lookup from db

• local end time – local start time
• remote receive on-demand reply – remote send request

• 1M+ qps
• Measured local
• Measured remotely

• Non-goals (future planning)
• Better balancing of different levels of cache



Arion Wing

• Goals
• Turn upstream db schema to DP operations
• Local db persistence (sqlite)

• to provide most efficient on-demand lookup
• also provides last-known-good version to restore from

• Reconcile from local data persistence and remote db, the total data amount per 
Arion Wing is a few GBs

• Sub-ms session on-demand lookup
• Start time is when packet (initial connection) session missed, and put on-hold by data plane, 

need to see what is the behavior from eBpf
• End time is when lookup done, and release packet from dp

• Non-goals (future planning)
• Balancing and switching different session pools, like hot warm and cold


