
Consistency Options
(Demo and Discussion)

Open-Source Meeting 06/20

Topics

Regionless Store R&D Update

“Session” Consistency Demo

1. Project Update

Resource
cluster Resource

cluster
Resource

cluster

Regionless KV Store

Stateless Control
Plane (CP)

Region 1 Region 2 Region 𝑁

Stateless CP Stateless CP

• System Metadata
• Workloads (pods,

deployments, etc.)
• VPC, Subnets
• …

node

Regionless Storage User Scenario

Consistency

Owner: Ke Xu

Linearizable

Sequential

Eventual

… …

R&D

Sharding Replication

Component Interface

“session”
By Store Revision Group

By Resource Version Group

… …

“bounded
staleness”

Fault ToleranceStorage Instances Scaling

Owner: Hongwei Chen

Isolation

Indexer
Global Reversion

Caching
Owner: Jun Shao

Owner: Hongwei Chen

Modding

… …

Sync-Async

Sharding Mgr
Interface

Replication/Consistency
Mgr Interface

Storage Instance Interface

Piping(I/O) Mgr
Interface

Rev->[kvs]
Primary

Replica0

Replican

Cache
Interface

Config Mgr

User request
put/get

Revision number
Mgr Interface

Indexer
Interface

Architecture (at interface level)

Key Features POC

*This repo is private now but will be made public shortly

Storage and Performance Validation

Owner: Jun Shao

I/O Perf Test

Owner: Hongwei Chen

2. Demo

Regionless KV store architecture for “session” consistency

“Naturally”
“as an application or without major changes”

“Strong consistency” vs ”Session Consistency”

Strong consistency

Session consistency

https://docs.microsoft.com/en-us/azure/cosmos-db/consistency-levels

https://docs.microsoft.com/en-us/azure/cosmos-db/consistency-levels

Game Session: RUNNING

rev 1: red rev 2: green rev 3: blue

KV Store

“Session" Game Session: RUNNING

rev 1: red rev 2: green

rev 1: red rev 2: green

get()

get()

rev 3: blue

KV Store

In-session readers

Out-of-session readers

writer

“Session" Game Session: OVER

rev 1: red rev 2: green

rev 1: red rev 2: green

get()

get()

rev 3: blue

KV Store

“Session" Game Session: OVER

rev 1: red rev 2: green

rev 1: red rev 2: green

get()

get()

rev 3: blue

rev 3: blue

“30 min later”

KV Store

*Read-uncommited Isolation for demo purpose

Out-of-session get()
(read from sync replica)

In-session get()
(read from async replica)

Session credential

Demo

Writing to session

Session read blocked for latest update

Non-session read continue without latest update

Replication Consistency by Group

Primary Replica 1 Replica 2 Replica 3 Replica 4

In-session Clients

C2C1 C3

Out-of-session Client

Linearizable Replica Group Sequential Replica Group

In-session
Reader Client

out-of-session
Reader Client

Writer Client

Time: T 1
1.1 Writer: {k1, v1}, {k2, v2} àprimary
1.2 {k1, v1}, {k2, v2} àall replicas
1.3 Both clients can read {k, v1}, {k, v2}

Put

Get

Get

Sync Replica
k, v1, v2

Primary

k, v1, v2

Async Replica k, v1, v2

*Clients are implemented in separate threads

*Read-uncommited Isolation for demo purpose

In-session
Reader Client

out-of-session
Reader Client

Writer Client

Time T 2:
2.1 {k, v3} à primary
2.2 Readers

• In-session clients blocked on reading
• Out-of-session can still read {k, v1}, {k, v2}

Put

Get

Get

Sync Replica

Async Replica
k, v1, v2

k, v3

k, v1, v2
Primary

Primary

*Read-uncommited Isolation for demo purpose

In-session
Reader Client

out-of-session
Reader Client

Writer Client

Time T 3:
3.1 {k, v3} à sync replica
3.2 Readers

• In-session clients can now read up to the 3rd kv
• Out-of-session can still read {k, v1}, {k, v2}

Get

Get

Primary
k, v3

Sync Replica

Sync Replica k, v3

Async Replica
k, v1, v2

*Read-uncommited Isolation for demo purpose

Primary

In-session
Reader Client

out-of-session
Reader Client

Writer Client

Time T 4:
4.1 The 3rd kv propagated to async replica
4.2 Readers

• In-session clients can now read the 3rd kv
• Out-of-session can now read the 3rd kv

Sync Replica

Async Replica

Get

Get

Primary

Sync Replica

Async Replica

k, v3

k, v3

k, v3

*Read-uncommited Isolation for demo purpose

In-session
Reader Client

out-of-session
Reader Client

Writer Client

Time T 2:
2.1 {k, v3} à primary
2.2 Readers

• In-session clients blocked on reading
• Out-of-session can still read {k, v1}, {k, v2}

Put

Get

Get

Sync Replica

Async Replica
k, v1, v2

k, v3

k, v1, v2
Primary

Primary

*Read-uncommited Isolation for demo purpose

Primary

In-session
Reader Client

out-of-session
Reader Client

Writer Client

Time T 4:
4.1 The 3rd kv propagated to async replica
4.2 Readers

• In-session clients can now read the 3rd kv
• Out-of-session can now read the 3rd kv

Sync Replica

Async Replica

Get

Get

Primary

Sync Replica

Async Replica

k, v3

k, v3

k, v3

*Read-uncommited Isolation for demo purpose

Demo Summary

1. MVCC for versioned key-value pairs

2. In-session put() provides strong consistency (linearizable)

3. Out-of-session put() provides sequential consistency (linearizable)

• Can be further extended to bounded sequential

4. Regionless store “natural” design

