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1. Project Update
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Key Features POC

*This repo is private now but will be made public shortly
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2. Demo

Regionless KV store architecture for “session” consistency

“Naturally”
“as an application or without major changes”



“Strong consistency” vs ”Session Consistency”

Strong consistency

Session consistency

https://docs.microsoft.com/en-us/azure/cosmos-db/consistency-levels

https://docs.microsoft.com/en-us/azure/cosmos-db/consistency-levels


Game Session: RUNNING

rev 1: red rev 2: green rev 3: blue

KV Store
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*Read-uncommited Isolation for demo purpose 

Out-of-session get()
(read from sync replica)

In-session get()
(read from async replica)

Session credential



Demo

Writing to session

Session read blocked for latest update

Non-session read continue without latest update



Replication Consistency by Group

Primary Replica 1 Replica 2 Replica 3 Replica 4

In-session Clients

C2C1 C3

Out-of-session Client

Linearizable Replica Group Sequential Replica Group



In-session 
Reader Client

out-of-session  
Reader Client

Writer Client

Time: T 1
1.1 Writer:  {k1, v1}, {k2, v2} àprimary
1.2 {k1, v1}, {k2, v2} àall replicas
1.3 Both clients can read {k, v1}, {k, v2} 

Put

Get

Get

Sync Replica
k, v1, v2

Primary

k, v1, v2

Async Replica k, v1, v2

*Clients are implemented in separate threads

*Read-uncommited Isolation for demo purpose 



In-session 
Reader Client

out-of-session  
Reader Client

Writer Client

Time T 2: 
2.1 {k, v3} à primary
2.2 Readers

• In-session clients blocked on reading
• Out-of-session can still read {k, v1}, {k, v2} 

Put

Get

Get
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Async Replica
k, v1, v2

k, v3

k, v1, v2
Primary

Primary

*Read-uncommited Isolation for demo purpose 



In-session 
Reader Client

out-of-session  
Reader Client

Writer Client

Time T 3: 
3.1 {k, v3} à sync replica
3.2 Readers

• In-session clients can now read up to the 3rd kv
• Out-of-session can still read {k, v1}, {k, v2} 

Get

Get

Primary
k, v3

Sync Replica

Sync Replica k, v3

Async Replica
k, v1, v2

*Read-uncommited Isolation for demo purpose 



Primary
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out-of-session  
Reader Client

Writer Client

Time T 4: 
4.1 The 3rd kv propagated to async replica
4.2 Readers

• In-session clients can now read the 3rd kv
• Out-of-session can now read the 3rd kv

Sync Replica

Async Replica

Get

Get

Primary

Sync Replica

Async Replica

k, v3

k, v3

k, v3

*Read-uncommited Isolation for demo purpose 
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Demo Summary

1. MVCC for versioned key-value pairs

2. In-session put() provides strong consistency (linearizable)

3. Out-of-session put() provides sequential consistency (linearizable)

• Can be further extended to bounded sequential

4. Regionless store “natural” design


