-
Notifications
You must be signed in to change notification settings - Fork 341
/
market.py
350 lines (305 loc) · 12.7 KB
/
market.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
# coding=utf-8
import pandas as pd
import numpy as np
import math
from base.env.trader import Trader
from base.model.document import Stock, Future
from sklearn.preprocessing import StandardScaler
class Market(object):
Running = 0
Done = -1
def __init__(self, codes, start_date="2008-01-01", end_date="2018-01-01", **options):
# Initialize codes.
self.codes = codes
self.index_codes = []
self.state_codes = []
# Initialize dates.
self.dates = []
self.t_dates = []
self.e_dates = []
# Initialize data frames.
self.origin_frames = dict()
self.scaled_frames = dict()
# Initialize scaled data x, y.
self.data_x = None
self.data_y = None
# Initialize scaled seq data x, y.
self.seq_data_x = None
self.seq_data_y = None
# Initialize flag date.
self.next_date = None
self.iter_dates = None
self.current_date = None
# Initialize parameters.
self._init_options(**options)
# Initialize stock data.
self._init_data(start_date, end_date)
def _init_options(self, **options):
try:
self.m_type = options['market']
except KeyError:
self.m_type = 'stock'
try:
self.init_cash = options['cash']
except KeyError:
self.init_cash = 100000
try:
self.logger = options['logger']
except KeyError:
self.logger = None
try:
self.use_sequence = options['use_sequence']
except KeyError:
self.use_sequence = False
try:
self.use_normalized = options['use_normalized']
except KeyError:
self.use_normalized = True
try:
self.mix_trader_state = options['mix_trader_state']
except KeyError:
self.mix_trader_state = True
try:
self.mix_index_state = options['mix_index_state']
except KeyError:
self.mix_index_state = False
finally:
if self.mix_index_state:
self.index_codes.append('sh')
try:
self.seq_length = options['seq_length']
except KeyError:
self.seq_length = 5
finally:
self.seq_length = self.seq_length if self.seq_length > 1 else 2
try:
self.training_data_ratio = options['training_data_ratio']
except KeyError:
self.training_data_ratio = 0.7
try:
scaler = options['scaler']
except KeyError:
scaler = StandardScaler
self.state_codes = self.codes + self.index_codes
self.scaler = [scaler() for _ in self.state_codes]
self.trader = Trader(self, cash=self.init_cash)
self.doc_class = Stock if self.m_type == 'stock' else Future
def _init_data(self, start_date, end_date):
self._init_data_frames(start_date, end_date)
self._init_env_data()
self._init_data_indices()
def _validate_codes(self):
if not self.state_code_count:
raise ValueError("Codes cannot be empty.")
for code in self.state_codes:
if not self.doc_class.exist_in_db(code):
raise ValueError("Code: {} not exists in database.".format(code))
def _init_data_frames(self, start_date, end_date):
# Remove invalid codes first.
self._validate_codes()
# Init columns and data set.
columns, dates_set = ['open', 'high', 'low', 'close', 'volume'], set()
# Load data.
for index, code in enumerate(self.state_codes):
# Load instrument docs by code.
instrument_docs = self.doc_class.get_k_data(code, start_date, end_date)
# Init instrument dicts.
instrument_dicts = [instrument.to_dic() for instrument in instrument_docs]
# Split dates.
dates = [instrument[1] for instrument in instrument_dicts]
# Split instruments.
instruments = [instrument[2:] for instrument in instrument_dicts]
# Update dates set.
dates_set = dates_set.union(dates)
# Build origin and scaled frames.
scaler = self.scaler[index]
scaler.fit(instruments)
instruments_scaled = scaler.transform(instruments)
origin_frame = pd.DataFrame(data=instruments, index=dates, columns=columns)
scaled_frame = pd.DataFrame(data=instruments_scaled, index=dates, columns=columns)
# Build code - frame map.
self.origin_frames[code] = origin_frame
self.scaled_frames[code] = scaled_frame
# Init date iter.
self.dates = sorted(list(dates_set))
# Rebuild index.
for code in self.state_codes:
origin_frame = self.origin_frames[code]
scaled_frame = self.scaled_frames[code]
self.origin_frames[code] = origin_frame.reindex(self.dates, method='bfill')
self.scaled_frames[code] = scaled_frame.reindex(self.dates, method='bfill')
def _init_env_data(self):
if not self.use_sequence:
self._init_series_data()
else:
self._init_sequence_data()
def _init_series_data(self):
# Calculate data count.
self.data_count = len(self.dates[: -1])
# Calculate bound index.
self.bound_index = int(self.data_count * self.training_data_ratio)
# Init scaled_x, scaled_y.
scaled_data_x, scaled_data_y = [], []
for index, date in enumerate(self.dates[: -1]):
# Get current x, y.
x = [self.scaled_frames[code].iloc[index] for code in self.state_codes]
y = [self.scaled_frames[code].iloc[index + 1] for code in self.state_codes]
# Convert x, y to array.
x = np.array(x).reshape((1, -1))
y = np.array(y)
# Append x, y
scaled_data_x.append(x)
scaled_data_y.append(y)
# Convert list to array.
self.data_x = np.array(scaled_data_x)
self.data_y = np.array(scaled_data_y)
def _init_sequence_data(self):
# Calculate data count.
self.data_count = len(self.dates[: -1 - self.seq_length])
# Calculate bound index.
self.bound_index = int(self.data_count * self.training_data_ratio)
# Init seqs_x, seqs_y.
scaled_seqs_x, scaled_seqs_y = [], []
# Scale to valid dates.
for date_index, date in enumerate(self.dates[: -1]):
# Continue until valid date index.
if date_index < self.seq_length:
continue
data_x, data_y = [], []
for index, code in enumerate(self.state_codes):
# Get scaled frame by code.
scaled_frame = self.scaled_frames[code]
# Get instrument data x.
instruments_x = scaled_frame.iloc[date_index - self.seq_length: date_index]
data_x.append(np.array(instruments_x))
# Get instrument data y.
if index < date_index - 1:
if date_index < self.bound_index:
# Get y, y is not at date index, but plus 1. (Training Set)
instruments_y = scaled_frame.iloc[date_index + 1]['close']
else:
# Get y, y is at date index. (Test Set)
instruments_y = scaled_frame.iloc[date_index + 1]['close']
data_y.append(np.array(instruments_y))
# Convert list to array.
data_x = np.array(data_x)
data_y = np.array(data_y)
seq_x = []
seq_y = data_y
# Build seq x, y.
for seq_index in range(self.seq_length):
seq_x.append(data_x[:, seq_index, :].reshape((-1)))
# Convert list to array.
seq_x = np.array(seq_x)
scaled_seqs_x.append(seq_x)
scaled_seqs_y.append(seq_y)
# Convert seq from list to array.
self.seq_data_x = np.array(scaled_seqs_x)
self.seq_data_y = np.array(scaled_seqs_y)
def _init_data_indices(self):
# Calculate indices range.
self.data_indices = np.arange(0, self.data_count)
# Calculate train and eval indices.
self.t_data_indices = self.data_indices[:self.bound_index]
self.e_data_indices = self.data_indices[self.bound_index:]
# Generate train and eval dates.
self.t_dates = self.dates[:self.bound_index]
self.e_dates = self.dates[self.bound_index:]
def _origin_data(self, code, date):
date_index = self.dates.index(date)
return self.origin_frames[code].iloc[date_index]
def _scaled_data_as_state(self, date):
if not self.use_sequence:
data = self.data_x[self.dates.index(date)]
if self.mix_trader_state:
trader_state = self.trader.scaled_data_as_state()
data = np.insert(data, -1, trader_state).reshape((1, -1))
return data
else:
return self.seq_data_x[self.dates.index(date)]
def reset(self, mode='train'):
# Reset trader.
self.trader.reset()
# Reset iter dates by mode.
self.iter_dates = iter(self.t_dates) if mode == 'train' else iter(self.e_dates)
try:
self.current_date = next(self.iter_dates)
self.next_date = next(self.iter_dates)
except StopIteration:
raise ValueError("Reset error, dates are empty.")
# Reset baseline.
self._reset_baseline()
return self._scaled_data_as_state(self.current_date)
def get_batch_data(self, batch_size=32):
batch_indices = np.random.choice(self.t_data_indices, batch_size)
if not self.use_sequence:
batch_x = self.data_x[batch_indices]
batch_y = self.data_y[batch_indices]
else:
batch_x = self.seq_data_x[batch_indices]
batch_y = self.seq_data_y[batch_indices]
return batch_x, batch_y
def get_test_data(self):
if not self.use_sequence:
test_x = self.data_x[self.e_data_indices]
test_y = self.data_y[self.e_data_indices]
else:
test_x = self.seq_data_x[self.e_data_indices]
test_y = self.seq_data_y[self.e_data_indices]
return test_x, test_y
def forward(self, stock_code, action_code):
# Check Trader.
self.trader.remove_invalid_positions()
self.trader.reset_reward()
# Get stock data.
stock = self._origin_data(stock_code, self.current_date)
stock_next = self._origin_data(stock_code, self.next_date)
# Execute transaction.
action = self.trader.action_by_code(action_code)
action(stock_code, stock, 100, stock_next)
# Init episode status.
episode_done = self.Running
# Add action times.
self.trader.action_times += 1
# Update date if need.
if self.trader.action_times == self.code_count:
self._update_profits_and_baseline()
try:
self.current_date, self.next_date = self.next_date, next(self.iter_dates)
except StopIteration:
episode_done = self.Done
finally:
self.trader.action_times = 0
# Get next state.
state_next = self._scaled_data_as_state(self.current_date)
# Return s_n, r, d, info.
return state_next, self.trader.reward, episode_done, self.trader.cur_action_status
def _update_profits_and_baseline(self):
prices = [self._origin_data(code, self.current_date).close for code in self.codes]
baseline_profits = np.dot(self.stocks_holding_baseline, np.transpose(prices)) - self.trader.initial_cash
policy_profits = self.trader.profits
self.trader.history_baselines.append(baseline_profits)
self.trader.history_profits.append(policy_profits)
def _reset_baseline(self):
# Calculate cash piece.
cash_piece = self.init_cash / self.code_count
# Get stocks data.
stocks = [self._origin_data(code, self.current_date) for code in self.codes]
# Init stocks baseline.
self.stocks_holding_baseline = [int(math.floor(cash_piece / stock.close)) for stock in stocks]
@property
def code_count(self):
return len(self.codes)
@property
def index_code_count(self):
return len(self.index_codes)
@property
def state_code_count(self):
return len(self.state_codes)
@property
def data_dim(self):
data_dim = self.state_code_count * self.scaled_frames[self.codes[0]].shape[1]
if not self.use_sequence:
if self.mix_trader_state:
data_dim += (2 + self.code_count)
return data_dim