forked from BUPT-GAMMA/OpenHGNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalircd_dataset.py
313 lines (272 loc) · 12.6 KB
/
alircd_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
import torch
import torch as th
import os
from dgl.data import DGLBuiltinDataset
from dgl.data.utils import load_graphs, save_graphs
import csv
from tqdm import tqdm
import numpy as np
import pickle as pkl
import dgl
__all__ = ['AliRCDDataset', 'AliRCDSmallDataset', 'AliRCDSession1Dataset', 'AliRCDSession2Dataset','AliICDMDataset']
class AliRCDDataset(DGLBuiltinDataset):
r"""AliRCD(Alibaba Risk Commodity Detection) dataset is extracted from real-world risk scenarios at Alibaba.
This dataset is for ICDM 2022 competition. Detailed Information is here:
https://tianchi.aliyun.com/competition/entrance/531976/information. When we create the dgl graph, we rearrange
the node ids from the original files. The map from original node id to dgl node id can be retrieved from property
item_map and the map from dgl node id to original node id can be retrieved from property rev_item_map.
Parameters
----------
session : str
'small', 'session1' or 'session2'. The small one is only used for debug and helps with understanding
the data format.
raw_dir : str
Specifying the directory that will store the
downloaded data or the directory that
already stores the input data.
Default: ~/.dgl/
force_reload : bool
Whether to reload the dataset. Default: False
verbose : bool
Whether to print out progress information. Default: False
transform : callable, optional
A transform that takes in a :class:`~dgl.DGLGraph` object and returns
a transformed version. The :class:`~dgl.DGLGraph` object will be
transformed before every access.
"""
def __init__(self, session, raw_dir=None, force_reload=False,
verbose=False, transform=None):
name = 'AliRCD_{}'.format(session)
self.session = session
self.load_labels = not session == 'session2'
super(AliRCDDataset, self).__init__(
name,
url='https://s3.cn-north-1.amazonaws.com.cn/dgl-data/dataset/openhgnn/{}.zip'.format(name),
raw_dir=raw_dir,
force_reload=force_reload, verbose=verbose, transform=transform)
def process(self):
if self.session == 'session1':
edge_size = 157814864
node_size = 13806619
elif self.session == 'session2':
edge_size = 120691444
node_size = 10284026
else: # for debug
edge_size = 100
node_size = 100
# load node info
nodes_info = self._get_node_atts(node_size)
# item map and reversed item map
self._item_map = nodes_info['maps']['item']
self._rev_item_map = {}
for k, v in self._item_map.items():
self._rev_item_map[v] = k
# load edges
g = self._format_dgl_edges(nodes_info, edge_size)
# add attrs
for ntype, embedding_dict in nodes_info['embeds'].items():
dim = embedding_dict[0].shape[0]
g.nodes[ntype].data['h'] = torch.rand(g.num_nodes(ntype), dim)
for nid, embedding in tqdm(embedding_dict.items()):
g.nodes[ntype].data['h'][nid] = torch.from_numpy(embedding)
# load label
num_nodes = g.num_nodes(self.category)
if self.load_labels:
labels_path = os.path.join(self.save_path, '{}_train_labels.csv'.format(self.name))
labels = th.tensor([float('nan')] * g.num_nodes(self.category))
with open(labels_path, 'r') as f:
csvreader = csv.reader(f)
for row in csvreader:
orig_id = int(row[0])
new_id = self._item_map.get(orig_id)
if new_id is not None:
labels[new_id] = int(row[1])
label_mask = ~th.isnan(labels)
label_idx = th.nonzero(label_mask, as_tuple=False).squeeze()
g.nodes[self.category].data['label'] = labels.type(th.int64)
# label_idx = np.random.permutation(np.array(label_idx)) # shuffle the label index
split_ratio = [0.8, 0.2]
num_labels = len(label_idx)
train_mask = th.zeros(num_nodes).bool()
train_mask[label_idx[0: int(split_ratio[0] * num_labels)]] = True
val_mask = th.zeros(num_nodes).bool()
val_mask[
label_idx[int(split_ratio[0] * num_labels): int((split_ratio[0] + split_ratio[1]) * num_labels)]] = True
g.nodes[self.category].data['train_mask'] = train_mask
g.nodes[self.category].data['val_mask'] = val_mask
# load test_idx
test_idx_path = os.path.join(self.save_path, '{}_test_ids.csv'.format(self.name))
test_mask = th.zeros(num_nodes).bool()
with open(test_idx_path, 'r') as f:
csvreader = csv.reader(f)
for row in csvreader:
orig_id = int(row[0])
new_id = self._item_map.get(orig_id)
if new_id is not None:
test_mask[new_id] = True
g.nodes[self.category].data['test_mask'] = test_mask
if self.session == "ICDM" :
test_labels_path = os.path.join(self.save_path, '{}_test_labels.csv'.format(self.name))
with open(test_labels_path, 'r') as f:
csvreader = csv.reader(f)
for row in csvreader:
line = row[0].split('\t')
test_label = int(float(line[1]))
test_id = int(line[0])
new_id = self._item_map.get(test_id)
if new_id is not None:
g.nodes[self.category].data['label'][new_id] = test_label
self._g = g
if self.verbose:
print(self._g)
print('finish loading dataset')
def _get_node_atts(self, node_size=100):
node_file = os.path.join(self.save_path, '{}_nodes.csv'.format(self.name))
node_maps = {}
node_embeds = {}
count = 0
count2 = 0
node_counts = node_size
process = tqdm(total=node_counts)
with open(node_file, 'r') as rf:
while True:
line = rf.readline()
if line is None or len(line) == 0:
break
info = line.strip().split(",")
node_id = int(info[0])
node_type = info[1].strip()
node_maps.setdefault(node_type, {})
node_id_v2 = len(node_maps[node_type])
node_maps[node_type][node_id] = node_id_v2
if node_type == 'item' and len(info[2]) == 0:
node_embeds.setdefault(node_type, {})
node_embeds[node_type][node_id_v2] = np.zeros(128, dtype=np.float32)
count2 += 1
elif len(info) == 3 and len(info[2]) > 0:
node_embeds.setdefault(node_type, {})
node_embeds[node_type][node_id_v2] = np.array([x for x in info[2].split(":")], dtype=np.float32)
count += 1
if count % 100000 == 0:
process.update(100000)
process.close()
print('lack of features:', count2, count, len(node_maps['item']))
print('node_types', node_maps.keys())
for node_type in node_maps:
print('node_type', node_type, len(node_maps[node_type]))
print(len(node_embeds['item']))
nodes_dict = {'maps': node_maps, 'embeds': node_embeds}
return nodes_dict
def _format_dgl_edges(self, node_info, edge_size=100):
node_maps = node_info['maps']
edges = {}
edges_hg = {}
process = tqdm(total=edge_size)
count = 0
edge_file = os.path.join(self.save_path, '{}_edges.csv'.format(self.name))
with open(edge_file, 'r') as rf:
while True:
line = rf.readline()
if line is None or len(line) == 0:
break
line_info = line.strip().split(",")
source_id, dest_id, source_type, dest_type, edge_type = line_info
source_id = node_maps[source_type][int(source_id)]
dest_id = node_maps[dest_type][int(dest_id)]
edges.setdefault(edge_type, {})
edges[edge_type].setdefault('source', []).append(source_id)
edges[edge_type].setdefault('dest', []).append(dest_id)
edges[edge_type].setdefault('source_type', source_type)
edges[edge_type].setdefault('dest_type', dest_type)
count += 1
if count % 100000 == 0:
process.update(100000)
process.close()
for edge_type in edges:
source_type = edges[edge_type]['source_type']
dest_type = edges[edge_type]['dest_type']
source = edges[edge_type]['source']
dest = edges[edge_type]['dest']
edges_hg[(source_type, edge_type, dest_type)] = list(zip(source, dest))
hg = dgl.heterograph(edges_hg)
return hg
def has_cache(self):
graph_path = os.path.join(self.save_path, 'graph.bin')
return os.path.exists(graph_path)
def save(self):
graph_path = os.path.join(self.save_path, 'graph.bin')
save_graphs(graph_path, self._g)
pkl.dump(self.item_map, open(os.path.join(self.save_path, 'item_map.pkl'), 'wb'))
pkl.dump(self.rev_item_map, open(os.path.join(self.save_path, 'rev_item_map.pkl'), 'wb'))
def load(self):
graph_path = os.path.join(self.save_path, 'graph.bin')
gs, _ = load_graphs(graph_path)
self._item_map = pkl.load(open(os.path.join(self.save_path, 'item_map.pkl'), 'rb'))
self._rev_item_map = pkl.load(open(os.path.join(self.save_path, 'rev_item_map.pkl'), 'rb'))
self._g = gs[0]
if self.verbose:
print(self._g)
@property
def item_map(self):
return self._item_map
@property
def rev_item_map(self):
return self._rev_item_map
@property
def category(self):
return 'item'
@property
def target_ntype(self):
return 'item'
@property
def num_classes(self):
return 2
def __getitem__(self, idx):
assert idx == 0
return self._g
def __len__(self):
return 1
@property
def meta_paths_dict(self):
return {'IBI': [('item', 'A', 'b'),
('b', 'A_1', 'item')],
'IFAFI': [('item', 'B_1', 'f'),
('f', 'G', 'a'),
('a', 'G_1', 'f'),
('f', 'B', 'item')],
'IFCFI': [('item', 'B_1', 'f'),
('f', 'D', 'c'),
('c', 'D_1', 'f'),
('f', 'B', 'item')],
'IFDFI': [('item', 'B_1', 'f'),
('f', 'C', 'd'),
('d', 'C_1', 'f'),
('f', 'B', 'item')],
'IFEFI': [('item', 'B_1', 'f'),
('f', 'F', 'e'),
('e', 'F_1', 'f'),
('f', 'B', 'item')],
}
class AliRCDSmallDataset(AliRCDDataset):
def __init__(self, raw_dir=None, force_reload=False, verbose=False, transform=None):
session = 'small'
super(AliRCDSmallDataset, self).__init__(session, raw_dir=raw_dir, force_reload=force_reload, verbose=verbose,
transform=transform)
class AliRCDSession1Dataset(AliRCDDataset):
def __init__(self, raw_dir=None, force_reload=False, verbose=False, transform=None):
session = 'session1'
super(AliRCDSession1Dataset, self).__init__(session, raw_dir=raw_dir, force_reload=force_reload,
verbose=verbose,
transform=transform)
class AliRCDSession2Dataset(AliRCDDataset):
def __init__(self, raw_dir=None, force_reload=False, verbose=False, transform=None):
session = 'session2'
super(AliRCDSession2Dataset, self).__init__(session, raw_dir=raw_dir, force_reload=force_reload,
verbose=verbose,
transform=transform)
class AliICDMDataset(AliRCDDataset):
def __init__(self, raw_dir=None, force_reload=False, verbose=False, transform=None):
session = 'ICDM'
super(AliICDMDataset, self).__init__(session, raw_dir=raw_dir, force_reload=force_reload,
verbose=verbose,
transform=transform)