
Extending Sign-In With Ethereum:
Session Keys, Capabilities, and Beyond

Wayne Chang, Spruce
Twitter: @wycdd

CASA 2022

Web3 and Decentralized Identity

● Web3 has created the most successful form of decentralized identity ever.

● Today’s wallets use keys to sign blockchain transactions, and not much else.

● With these keys, we can also move far beyond Web2 identity and simple SSO.

● Sign-In with Ethereum is leading the charge.

2

Unbundling the Login

Sign-In with Ethereum Crash Course
EIP-4361 standardizes a message format for signing.

Sign-In with Ethereum Crash Course
Requires EIP-191 personal sign + ABNF, with domain binding to add security.

Now all Ethereum wallets can do passwordless login.

Why do we sign things?

To do an action, such as authenticate, authorize, or
execute with guarantees of:
● Integrity: “only this exact message”
● Authenticity: “it was me who signed it”

More signing = more opportunity for user control.
Let’s be user control maxis.

The Problem with Signing Other Stuff Today

= 3 x
{ SOME ACTION}

The Main Idea Behind Session Keys: Delegation

How Session Keys Improve UX

= 1 x
{ DELEGATE KEY }

Example Session Key Delegation using SIWE CACAOs

Then you can
issue capabilities
and more!

The Transition: web2 to web3

Sometimes we need to prove validity

● How do we make sure that the key was used within the validity period?
● We can know it was used before a certain time (expiration-time) if we have

a merkle inclusion proof or similar of the signature. What other ways are
there?

● We can know it was used after a certain time (not-before/issued-at) by
including a recent blockhash in the payload. What other ways are there?

● Revocation mechanisms can be further defined within claim structures, such
as W3C VCs.

Example Use: W3C Verifiable Credentials + Presentations

// ...

"proof": {

 "type": "CacaoProof2022",

 "created":"2019-12-11T03:50:55Z",

 "proofPurpose":"capabilityDelegation",

 "verificationMethod": "did:pkh:eip155:...#<vm>",

 "proofValue": "multibase(cacao)",

 "currentBlockhash": "blockhash(blockNumber)",

 "inclusionProof": "merkleInclusionProof()"

}

Other Considerations for Key Delegation

● Security model evaluation across different environments and best practices
per environment: DOM (localStorage vs sessionStorage?), Browser
Extension, Browser Extension Extension, Native Apps, 3rd party server.

● Encryption Keys, e.g., secp256k1 delegating to ed25519.
● Other key types like BLS to support features like ZKPs.
● If a blockchain VM supports key delegation, then you can have an onramp to

those chains.

Relationship with HD Key Derivation

● Sure, it works, but for ephemeral keys it may be safer to rely on system
entropy to ensure no key reuse.

● If you use HD Key Derivation and want ephemeral keys, you will need to
remember which keys have already been used as state somewhere.

Opportunities to collaborate

● What is the general shape of a “key delegation”? Is this something we can
write abstract interfaces for, or is it too application-dependent?

● Explore useful features: preempted revocation? capability interoperability?
● Standardize proofs for use within validity period:

○ Proof-of-use-after-time (“not-before”/“issued-at”)
○ Proof-of-use-before-time (“expiration-time”)

● Standardize encrypt-to-pkh.

