Extending Sign-In With Ethereum:

Session Keys, Capabilities, and Beyond

Wayne Chang, Spruce
Twitter: @wycdd
CASA 2022

' Spruce

Web3 and Decentralized Identity

e \Web3 has created the most successful form of decentralized identity ever.
e Today's wallets use keys to sign blockchain transactions, and not much else.
e \With these keys, we can also move far beyond Web?2 identity and simple SSO.

e Sign-In with Ethereum is leading the charge.

SIGN IN WITH

ETHEREUM /A Spruce

Unbundling the Login
Unl—:um‘ihmj The Lo:-,?n

weba

webd

B33 Losjin

Sign-?n with...

[
O

Ke_ -Based Use_r‘ Authentication

‘$ % - Q p 9 Terra BEE A WebAuthn
NEAR

Public Network Transactions

Z D .
9 OpenSea #/ 'ENSA f Curve i chgc i @
}\j‘ D @ AAVE @ ‘3 Compound -

{ S?gn-In with Ethereum (& web3 losﬁn)

OPR-Chain Data (both Public and Private)
' Spruce Lit @ Filecoin meess |©N it
1> ceramic a arweave g Bluesky o Verite Wsc @

Monoliths

User-Defined Ide_nt-“ty

Authentication

Read/Write

"On-Chain' Data

Read/Write

"OPP-Chain' Data

Sign-In with Ethereum Crash Course

EIP-4361 standardizes a message format for signing.

${domain} wants you to sign in with your Ethereum account:
${address}

${statement}

URI: ${uri}

Version: ${version}

Chain ID: ${chain-id}

Nonce: ${nonce}

Issued At: ${issued-at}

Expiration Time: ${expiration-time}
Not Before: ${not-before}

Request ID: ${request-id}
Resources:

- ${resources[0]}

- ${resources[1]}

- ${resources[n]}

' Spruce

Sign-In with Ethereum Crash Course
Requires EIP-191 personal sign + ABNF, with domain binding to add security.

sign-in-with-ethereum =
domain %s" wants you to sign in with your Ethereum account:" LF
address LF
LF
[statement LF]
LF
$s"URI: " uri LF

$s"Version: version LF

$s"Chain ID: " chain-id LF

$s"Nonce: nonce LF

$s"Issued At: " issued-at

[LF %$s"Expiration Time: " expiration-time]
[LF %s"Not Before: " not-before]

[LF %$s"Request ID: " request-id]

[LF %s"Resources:"

resources |

l Spruce

Now all Ethereum wallets can do passwordless login.

[. [X] MetaMask Notification

r

00 MetaMask Notification

Signature Request

Account: Balance:
. Account 1 OETH
Origin: ¢ https://spruceid.github.io

You are signing:

Message:

spruceid.github.io wants you to sign in with your
Ethereum account:
0xc02aaa39b223fe8d0a0e5c4f27ead?083c756¢c
c2

| accept the MetaMask Terms of Service:
https://community.metamask.io/tos

Version: 1

Nonce: 32891757
Issued At: 2021-09-30T16:25:24Z

Cancel

=

. spruceid.github.io

. o
Sign-in request
This site is requesting to sign in with

@ Account1

Message:

| accept the MetaMask Terms of Service:
https://community.metamask.io/tos

URI:
https://spruceid.github.io
Version:

1

Chain ID:

1

Nonce:

32891757

Issued at:
2021-09-30T16:25:24.000Z
Resources: 2

ipfs://Qme7ss3ARVgxvérXqVPiikMJ8u2NLgm
gszg13pYrDKEoiu
https://example.com/my-web2-claim.json

= ncel m

' Spruce

Why do we sign things?
To do an action, such as authenticate, authorize, or
execute with guarantees of:

e Integrity: “only this exact message”
e Authenticity: “it was me who signed it”

More signing = more opportunity for user control.
Let’s be user control maxis.

' \ Spruce

The Problem with Signing Other Stuff Today

Sign

Sign

/
2L
N

Sign

Each signing opens up a ne

__>

Action

Action

Action

w prompt, interrupting the user and breaking flow

[ION] MetaMask Notification

Signature Request

{ SOME ACTION}

l Spruce

The Main Idea Behind Session Keys: Delegation

S‘.gn Deleqgation:
~ reo.o(-ony

User with
Session-key

With delegation to a session key, there is only one signing to start the session with restrictions

' Spruce

How Session Keys Improve UX

[ON] MetaMask Notification

Signature Request

Account: Balance:
% Action ® rubic 0.471414 ETH

Origin: @ https://login.xyz
Sign—Iv\ with Ethereum
Key De_le_go"tion:

- read-only . — |
—> = 16)B Bomo(wio(‘th —= ACt‘on — 1 X Message:
- expires in A hours
) o=

You are signing:

{ DELEGATE KEY }

— Action

Ccncel “

' Spruce

With session keys, all actions are rooted in the user's keys

Example Session Key Delegation using SIWE CACAOs

// address from EIP-4361 as did:pkh Then you can

siissit: didapkhizeipl5h5: c et

// domain from EIP-4361 " lis

4 Shniesiopi e ol —> Issue capabilities
and more!

// uri from EIP-4361, in that case session DID
taudi: " tdidikey:z6 o

"resources": |

' Spruce

The Transition: web2 to web3

Backend
Server
7 \

\e

Sometimes we need to prove validity

e How do we make sure that the key was used within the validity period?

e \We can know it was used before a certain time (expiration-time) if we have
a merkle inclusion proof or similar of the signature. What other ways are
there?

e \We can know it was used after a certain time (not-before/issued-at) by
including a recent blockhash in the payload. \What other ways are there?

e Revocation mechanisms can be further defined within claim structures, such
as W3C VCs.

' \ Spruce

Example Use: W3C Verifiable Credentials + Presentations

//

"proof": {
"type": "CacaoProof2022",
"created" :"2019-12-11T63:50:557",
"proofPurpose” :"capabilityDelegation”,
"verificationMethod": "did:pkh:eip155:...#<vm>",
"proofValue": "multibase(cacao)",
“currentBlockhash": "blockhash(blockNumber)",

"inclusionProof": "merkleInclusionProof()"

' Spruce

Other Considerations for Key Delegation

e Security model evaluation across different environments and best practices
per environment: DOM (localStorage vs sessionStorage?), Browser
Extension, Browser Extension Extension, Native Apps, 3rd party server.

e Encryption Keys, e.g., secp256k1 delegating to ed25519.

e Other key types like BLS to support features like ZKPs.

e If a blockchain VM supports key delegation, then you can have an onramp to
those chains.

' \ Spruce

Relationship with HD Key Derivation

e Sure, it works, but for ephemeral keys it may be safer to rely on system
entropy to ensure no key reuse.

e If you use HD Key Derivation and want ephemeral keys, you will need to
remember which keys have already been used as state somewhere.

' Spruce

Opportunities to collaborate

e \What is the general shape of a “key delegation”? Is this something we can
write abstract interfaces for, or is it too application-dependent?
e Explore useful features: preempted revocation? capability interoperability?
e Standardize proofs for use within validity period:
o Proof-of-use-after-time (“not-before”/“issued-at”)
o Proof-of-use-before-time (“expiration-time”)
e Standardize encrypt-to-pkh.

' \ Spruce

