-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFace_data_collect.py
95 lines (62 loc) · 2.05 KB
/
Face_data_collect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
#!/usr/bin/env python
# coding: utf-8
# In[8]:
# Write a Python Script that captures images from your webcam video stream
# Extracts all Faces from the image frame (using haarcascades)
# Stores the Face information into numpy arrays
# 1. Read and show video stream, capture images
# 2. Detect Faces and show bounding box (haarcascade)
# 3. Flatten the largest face image(gray scale) and save in a numpy array
# 4. Repeat the above for multiple people to generate training data
import cv2
import numpy as np
import keyboard
#Init Camera
cap = cv2.VideoCapture(0)
# Face Detection
face_cascade = cv2.CascadeClassifier("haarcascade_frontalface_alt.xml")
skip = 0
face_data = []
dataset_path = 'C:/Users/abc/Desktop/AI_MAFIA/Face_recognition/'
file_name = input("Enter the name of the person : ")
while True:
ret,frame = cap.read()
if ret==False:
continue
gray_frame = cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(frame,1.3,5)
if len(faces)==0:
continue
faces = sorted(faces,key=lambda f:f[2]*f[3])
# Pick the last face (because it is the largest face acc to area(f[2]*f[3]))
for face in faces[-1:]:
x,y,w,h = face
cv2.rectangle(frame,(x,y),(x+w,y+h),(0,255,255),2)
#Extract (Crop out the required face) : Region of Interest
offset = 10
face_section = frame[y-offset:y+h+offset,x-offset:x+w+offset]
face_section = cv2.resize(face_section,(100,100))
skip += 1
if skip%10==0:
face_data.append(face_section)
print(len(face_data))
cv2.imshow("Frame",frame)
cv2.imshow("Face Section",face_section)
key_pressed = cv2.waitKey(1) & 0xFF
if key_pressed == ord('q'):
break
if keyboard.is_pressed('q'):
break
# Convert our face list array into a numpy array
face_data = np.asarray(face_data)
face_data = face_data.reshape((face_data.shape[0],-1))
print(face_data.shape)
# Save this data into file system
np.save(dataset_path+file_name+'.npy',face_data)
print("Data Successfully save at "+dataset_path+file_name+'.npy')
cap.release()
cv2.destroyAllWindows()
# In[2]:
import cv2
cv2.__version__
# In[ ]: