Required environments:
- Linux
- Python 3.6+
- PyTorch 1.3+
- CUDA 9.2+
- GCC 5+
- MMCV
- cocoapi-aitod
Install TODbox:
Note that our TODbox is based on the MMDetection 2.24.1. Assume that your environment has satisfied the above requirements, please follow the following steps for installation.
git clone https://github.com/Chasel-Tsui/mmdet-aitod.git
cd mmdet-nwdrka
pip install -r requirements/build.txt
python setup.py develop
Get Started
Train a network with with single GPU, for example, Faster R-CNN w/ NWD-RKA:
python tools/train.py configs_nwdrka/nwdrka/aitod_faster_r50_nwdrka_1x.py
Table 1. Training Set: AI-TOD-v2 trainval set, Validation Set: AI-TOD-v2 test set, 12 epochs
Method | Backbone | mAP | AP50 | AP75 | APvt | APt | APs | APm |
---|---|---|---|---|---|---|---|---|
FR | R-50 | 12.8 | 29.9 | 9.4 | 0.0 | 9.2 | 24.6 | 37.0 |
DR | R-50 | 16.1 | 35.5 | 12.5 | 0.1 | 12.6 | 28.3 | 40.0 |
FR w/ NWD-RKA | R-50 | 21.4 | 53.2 | 12.5 | 7.7 | 20.7 | 26.8 | 35.2 |
DR w/ NWD-RKA | R-50 | 24.7 | 57.4 | 17.1 | 9.7 | 24.2 | 29.3 | 39.3 |
FR denotes Faster R-CNN, DR denotes DetectoRS
For your convenience, we also provide the performance of the model trained on AI-TOD-v2 train set and validated on the AI-TOD-v2 val set. Table 2. Training Set: AI-TOD-v2 train set, Validation Set: AI-TOD-v2 val set, 12 epochs
Method | Backbone | mAP | AP50 | AP75 | APvt | APt | APs | APm |
---|---|---|---|---|---|---|---|---|
FR | R-50 | 12.9 | 29.5 | 9.2 | 0.0 | 9.5 | 27.3 | 37.2 |
FR w/ NWD-RKA | R-50 | 21.9 | 51.8 | 13.9 | 5.8 | 21.8 | 27.3 | 37.8 |
Table 3. Training Set: DOTA-v2 train set, Validation Set: DOTA-v2 val set, 12 epochs, HBB Task
Method | Backbone | mAP | AP50 | AP75 | APvt | APt | APs | APm |
---|---|---|---|---|---|---|---|---|
FR | R-50 | 35.6 | 59.5 | 37.2 | 0.0 | 7.1 | 28.9 | 42.1 |
DR | R-50 | 40.8 | 62.6 | 44.4 | 0.0 | 7.0 | 29.9 | 47.8 |
FR w/ NWD-RKA | R-50 | 36.4 | 61.5 | 37.6 | 1.5 | 10.4 | 29.4 | 43.2 |
DR w/ NWD-RKA | R-50 | 41.9 | 66.3 | 44.4 | 1.9 | 10.6 | 30.3 | 48.5 |
Please refer to the paper for detailed performance on the AI-TOD, AI-TOD-v2, DOTA-v2 and VisDrone2019.