-
Notifications
You must be signed in to change notification settings - Fork 0
/
global.c
198 lines (160 loc) · 6.71 KB
/
global.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <mpi.h>
#include "allvars.h"
#include "proto.h"
/*! \file global.c
* \brief Computes global physical properties of the system
*/
/*! This routine computes various global properties of the particle
* distribution and stores the result in the struct `SysState'.
* Currently, not all the information that's computed here is actually
* used (e.g. momentum is not really used anywhere), just the energies are
* written to a log-file every once in a while.
*/
void compute_global_quantities_of_system(void)
{
int i, j, n;
struct state_of_system sys;
double a1, a2, a3;
double entr = 0, egyspec, vel[3];
double dt_entr, dt_gravkick, dt_hydrokick;
if(All.ComovingIntegrationOn)
{
a1 = All.Time;
a2 = All.Time * All.Time;
a3 = All.Time * All.Time * All.Time;
}
else
{
a1 = a2 = a3 = 1;
}
for(n = 0; n < 6; n++)
{
sys.MassComp[n] = sys.EnergyKinComp[n] = sys.EnergyPotComp[n] = sys.EnergyIntComp[n] = 0;
for(j = 0; j < 4; j++)
sys.CenterOfMassComp[n][j] = sys.MomentumComp[n][j] = sys.AngMomentumComp[n][j] = 0;
}
for(i = 0; i < NumPart; i++)
{
sys.MassComp[P[i].Type] += P[i].Mass;
sys.EnergyPotComp[P[i].Type] += 0.5 * P[i].Mass * P[i].Potential / a1;
if(All.ComovingIntegrationOn)
{
dt_entr = (All.Ti_Current - (P[i].Ti_begstep + P[i].Ti_endstep) / 2) * All.Timebase_interval;
dt_gravkick = get_gravkick_factor(P[i].Ti_begstep, All.Ti_Current) -
get_gravkick_factor(P[i].Ti_begstep, (P[i].Ti_begstep + P[i].Ti_endstep) / 2);
dt_hydrokick = get_hydrokick_factor(P[i].Ti_begstep, All.Ti_Current) -
get_hydrokick_factor(P[i].Ti_begstep, (P[i].Ti_begstep + P[i].Ti_endstep) / 2);
}
else
dt_entr = dt_gravkick = dt_hydrokick =
(All.Ti_Current - (P[i].Ti_begstep + P[i].Ti_endstep) / 2) * All.Timebase_interval;
for(j = 0; j < 3; j++)
{
vel[j] = P[i].Vel[j] + P[i].GravAccel[j] * dt_gravkick;
if(P[i].Type == 0)
vel[j] += SphP[i].HydroAccel[j] * dt_hydrokick;
}
if(P[i].Type == 0)
entr = SphP[i].Entropy + SphP[i].DtEntropy * dt_entr;
#ifdef PMGRID
if(All.ComovingIntegrationOn)
dt_gravkick = get_gravkick_factor(All.PM_Ti_begstep, All.Ti_Current) -
get_gravkick_factor(All.PM_Ti_begstep, (All.PM_Ti_begstep + All.PM_Ti_endstep) / 2);
else
dt_gravkick = (All.Ti_Current - (All.PM_Ti_begstep + All.PM_Ti_endstep) / 2) * All.Timebase_interval;
for(j = 0; j < 3; j++)
vel[j] += P[i].GravPM[j] * dt_gravkick;
#endif
sys.EnergyKinComp[P[i].Type] +=
0.5 * P[i].Mass * (vel[0] * vel[0] + vel[1] * vel[1] + vel[2] * vel[2]) / a2;
if(P[i].Type == 0)
{
#if defined ISOTHERM_EQS || defined NEUTRINO_FLUID
egyspec = entr;
#else
egyspec = entr / (GAMMA_MINUS1) * pow(SphP[i].Density / a3, GAMMA_MINUS1);
#endif
sys.EnergyIntComp[0] += P[i].Mass * egyspec;
}
for(j = 0; j < 3; j++)
{
sys.MomentumComp[P[i].Type][j] += P[i].Mass * vel[j];
sys.CenterOfMassComp[P[i].Type][j] += P[i].Mass * P[i].Pos[j];
}
sys.AngMomentumComp[P[i].Type][0] += P[i].Mass * (P[i].Pos[1] * vel[2] - P[i].Pos[2] * vel[1]);
sys.AngMomentumComp[P[i].Type][1] += P[i].Mass * (P[i].Pos[2] * vel[0] - P[i].Pos[0] * vel[2]);
sys.AngMomentumComp[P[i].Type][2] += P[i].Mass * (P[i].Pos[0] * vel[1] - P[i].Pos[1] * vel[0]);
}
/* some the stuff over all processors */
MPI_Reduce(&sys.MassComp[0], &SysState.MassComp[0], 6, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
MPI_Reduce(&sys.EnergyPotComp[0], &SysState.EnergyPotComp[0], 6, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
MPI_Reduce(&sys.EnergyIntComp[0], &SysState.EnergyIntComp[0], 6, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
MPI_Reduce(&sys.EnergyKinComp[0], &SysState.EnergyKinComp[0], 6, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
MPI_Reduce(&sys.MomentumComp[0][0], &SysState.MomentumComp[0][0], 6 * 4, MPI_DOUBLE, MPI_SUM, 0,
MPI_COMM_WORLD);
MPI_Reduce(&sys.AngMomentumComp[0][0], &SysState.AngMomentumComp[0][0], 6 * 4, MPI_DOUBLE, MPI_SUM, 0,
MPI_COMM_WORLD);
MPI_Reduce(&sys.CenterOfMassComp[0][0], &SysState.CenterOfMassComp[0][0], 6 * 4, MPI_DOUBLE, MPI_SUM, 0,
MPI_COMM_WORLD);
if(ThisTask == 0)
{
for(i = 0; i < 6; i++)
SysState.EnergyTotComp[i] = SysState.EnergyKinComp[i] +
SysState.EnergyPotComp[i] + SysState.EnergyIntComp[i];
SysState.Mass = SysState.EnergyKin = SysState.EnergyPot = SysState.EnergyInt = SysState.EnergyTot = 0;
for(j = 0; j < 3; j++)
SysState.Momentum[j] = SysState.AngMomentum[j] = SysState.CenterOfMass[j] = 0;
for(i = 0; i < 6; i++)
{
SysState.Mass += SysState.MassComp[i];
SysState.EnergyKin += SysState.EnergyKinComp[i];
SysState.EnergyPot += SysState.EnergyPotComp[i];
SysState.EnergyInt += SysState.EnergyIntComp[i];
SysState.EnergyTot += SysState.EnergyTotComp[i];
for(j = 0; j < 3; j++)
{
SysState.Momentum[j] += SysState.MomentumComp[i][j];
SysState.AngMomentum[j] += SysState.AngMomentumComp[i][j];
SysState.CenterOfMass[j] += SysState.CenterOfMassComp[i][j];
}
}
for(i = 0; i < 6; i++)
for(j = 0; j < 3; j++)
if(SysState.MassComp[i] > 0)
SysState.CenterOfMassComp[i][j] /= SysState.MassComp[i];
for(j = 0; j < 3; j++)
if(SysState.Mass > 0)
SysState.CenterOfMass[j] /= SysState.Mass;
for(i = 0; i < 6; i++)
{
SysState.CenterOfMassComp[i][3] = SysState.MomentumComp[i][3] = SysState.AngMomentumComp[i][3] = 0;
for(j = 0; j < 3; j++)
{
SysState.CenterOfMassComp[i][3] +=
SysState.CenterOfMassComp[i][j] * SysState.CenterOfMassComp[i][j];
SysState.MomentumComp[i][3] += SysState.MomentumComp[i][j] * SysState.MomentumComp[i][j];
SysState.AngMomentumComp[i][3] +=
SysState.AngMomentumComp[i][j] * SysState.AngMomentumComp[i][j];
}
SysState.CenterOfMassComp[i][3] = sqrt(SysState.CenterOfMassComp[i][3]);
SysState.MomentumComp[i][3] = sqrt(SysState.MomentumComp[i][3]);
SysState.AngMomentumComp[i][3] = sqrt(SysState.AngMomentumComp[i][3]);
}
SysState.CenterOfMass[3] = SysState.Momentum[3] = SysState.AngMomentum[3] = 0;
for(j = 0; j < 3; j++)
{
SysState.CenterOfMass[3] += SysState.CenterOfMass[j] * SysState.CenterOfMass[j];
SysState.Momentum[3] += SysState.Momentum[j] * SysState.Momentum[j];
SysState.AngMomentum[3] += SysState.AngMomentum[j] * SysState.AngMomentum[j];
}
SysState.CenterOfMass[3] = sqrt(SysState.CenterOfMass[3]);
SysState.Momentum[3] = sqrt(SysState.Momentum[3]);
SysState.AngMomentum[3] = sqrt(SysState.AngMomentum[3]);
}
/* give everyone the result, maybe the want to do something with it */
MPI_Bcast(&SysState, sizeof(struct state_of_system), MPI_BYTE, 0, MPI_COMM_WORLD);
}