-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinit.c
297 lines (232 loc) · 7.06 KB
/
init.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <mpi.h>
#include "allvars.h"
#include "proto.h"
/*! \file init.c
* \brief Code for initialisation of a simulation from initial conditions
*/
/*! This function reads the initial conditions, and allocates storage for the
* tree. Various variables of the particle data are initialised and An intial
* domain decomposition is performed. If SPH particles are present, the inial
* SPH smoothing lengths are determined.
*/
void init(void)
{
int i, j;
double a3;
All.Time = All.TimeBegin;
switch (All.ICFormat)
{
case 1:
#if (MAKEGLASS > 1)
seed_glass();
#else
read_ic(All.InitCondFile);
#endif
break;
case 2:
case 3:
read_ic(All.InitCondFile);
break;
default:
if(ThisTask == 0)
printf("ICFormat=%d not supported.\n", All.ICFormat);
endrun(0);
}
All.Time = All.TimeBegin;
All.Ti_Current = 0;
if(All.ComovingIntegrationOn)
{
All.Timebase_interval = (log(All.TimeMax) - log(All.TimeBegin)) / TIMEBASE;
a3 = All.Time * All.Time * All.Time;
}
else
{
All.Timebase_interval = (All.TimeMax - All.TimeBegin) / TIMEBASE;
a3 = 1;
}
set_softenings();
All.NumCurrentTiStep = 0; /* setup some counters */
All.SnapshotFileCount = 0;
if(RestartFlag == 2)
All.SnapshotFileCount = atoi(All.InitCondFile + strlen(All.InitCondFile) - 3) + 1;
All.TotNumOfForces = 0;
All.NumForcesSinceLastDomainDecomp = 0;
if(All.ComovingIntegrationOn)
if(All.PeriodicBoundariesOn == 1)
check_omega();
All.TimeLastStatistics = All.TimeBegin - All.TimeBetStatistics;
if(All.ComovingIntegrationOn) /* change to new velocity variable */
{
for(i = 0; i < NumPart; i++)
for(j = 0; j < 3; j++)
P[i].Vel[j] *= sqrt(All.Time) * All.Time;
}
for(i = 0; i < NumPart; i++) /* start-up initialization */
{
for(j = 0; j < 3; j++)
P[i].GravAccel[j] = 0;
#ifdef PMGRID
for(j = 0; j < 3; j++)
P[i].GravPM[j] = 0;
#endif
P[i].Ti_endstep = 0;
P[i].Ti_begstep = 0;
P[i].OldAcc = 0;
P[i].GravCost = 1;
P[i].Potential = 0;
}
#ifdef PMGRID
All.PM_Ti_endstep = All.PM_Ti_begstep = 0;
#endif
#ifdef FLEXSTEPS
All.PresentMinStep = TIMEBASE;
for(i = 0; i < NumPart; i++) /* start-up initialization */
{
P[i].FlexStepGrp = (int) (TIMEBASE * get_random_number(P[i].ID));
}
#endif
for(i = 0; i < N_gas; i++) /* initialize sph_properties */
{
for(j = 0; j < 3; j++)
{
SphP[i].VelPred[j] = P[i].Vel[j];
SphP[i].HydroAccel[j] = 0;
}
SphP[i].DtEntropy = 0;
if(RestartFlag == 0)
{
SphP[i].Hsml = 0;
SphP[i].Density = -1;
}
}
ngb_treeallocate(MAX_NGB);
force_treeallocate(All.TreeAllocFactor * All.MaxPart, All.MaxPart);
All.NumForcesSinceLastDomainDecomp = 1 + All.TotNumPart * All.TreeDomainUpdateFrequency;
Flag_FullStep = 1; /* to ensure that Peano-Hilber order is done */
domain_Decomposition(); /* do initial domain decomposition (gives equal numbers of particles) */
ngb_treebuild(); /* will build tree */
setup_smoothinglengths();
TreeReconstructFlag = 1;
/* at this point, the entropy variable normally contains the
* internal energy, read in from the initial conditions file, unless the file
* explicitly signals that the initial conditions contain the entropy directly.
* Once the density has been computed, we can convert thermal energy to entropy.
*/
#if defined ISOTHERM_EQS || defined NEUTRINO_FLUID
#else
if(header.flag_entropy_instead_u == 0)
for(i = 0; i < N_gas; i++)
SphP[i].Entropy = GAMMA_MINUS1 * SphP[i].Entropy / pow(SphP[i].Density / a3, GAMMA_MINUS1);
#endif
}
/*! This routine computes the mass content of the box and compares it to the
* specified value of Omega-matter. If discrepant, the run is terminated.
*/
void check_omega(void)
{
double mass = 0, masstot, omega;
int i;
for(i = 0; i < NumPart; i++)
mass += P[i].Mass;
MPI_Allreduce(&mass, &masstot, 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
omega =
masstot / (All.BoxSize * All.BoxSize * All.BoxSize) / (3 * All.Hubble * All.Hubble / (8 * M_PI * All.G));
if(fabs(omega - All.Omega0) > 1.0e-3)
{
if(ThisTask == 0)
{
printf("\n\nI've found something odd!\n");
printf
("The mass content accounts only for Omega=%g,\nbut you specified Omega=%g in the parameterfile.\n",
omega, All.Omega0);
printf("\nI better stop.\n");
fflush(stdout);
}
endrun(1);
}
}
/*! This function is used to find an initial smoothing length for each SPH
* particle. It guarantees that the number of neighbours will be between
* desired_ngb-MAXDEV and desired_ngb+MAXDEV. For simplicity, a first guess
* of the smoothing length is provided to the function density(), which will
* then iterate if needed to find the right smoothing length.
*/
void setup_smoothinglengths(void)
{
int i, no, p;
if(RestartFlag == 0)
{
for(i = 0; i < N_gas; i++)
{
no = Father[i];
while(10 * All.DesNumNgb * P[i].Mass > Nodes[no].u.d.mass)
{
p = Nodes[no].u.d.father;
if(p < 0)
break;
no = p;
}
#ifndef TWODIMS
SphP[i].Hsml =
pow(3.0 / (4 * M_PI) * All.DesNumNgb * P[i].Mass / Nodes[no].u.d.mass, 1.0 / 3) * Nodes[no].len;
#else
SphP[i].Hsml =
pow(1.0 / (M_PI) * All.DesNumNgb * P[i].Mass / Nodes[no].u.d.mass, 1.0 / 2) * Nodes[no].len;
#endif
}
}
density();
}
/*! If the code is run in glass-making mode, this function populates the
* simulation box with a Poisson sample of particles.
*/
#if (MAKEGLASS > 1)
void seed_glass(void)
{
int i, k, n_for_this_task;
double Range[3], LowerBound[3];
double drandom, partmass;
long long IDstart;
All.TotNumPart = MAKEGLASS;
partmass = All.Omega0 * (3 * All.Hubble * All.Hubble / (8 * M_PI * All.G))
* (All.BoxSize * All.BoxSize * All.BoxSize) / All.TotNumPart;
All.MaxPart = All.PartAllocFactor * (All.TotNumPart / NTask); /* sets the maximum number of particles that may */
allocate_memory();
header.npartTotal[1] = All.TotNumPart;
header.mass[1] = partmass;
if(ThisTask == 0)
{
printf("\nGlass initialising\nPartMass= %g\n", partmass);
printf("TotNumPart= %d%09d\n\n",
(int) (All.TotNumPart / 1000000000), (int) (All.TotNumPart % 1000000000));
}
/* set the number of particles assigned locally to this task */
n_for_this_task = All.TotNumPart / NTask;
if(ThisTask == NTask - 1)
n_for_this_task = All.TotNumPart - (NTask - 1) * n_for_this_task;
NumPart = 0;
IDstart = 1 + (All.TotNumPart / NTask) * ThisTask;
/* split the temporal domain into Ntask slabs in z-direction */
Range[0] = Range[1] = All.BoxSize;
Range[2] = All.BoxSize / NTask;
LowerBound[0] = LowerBound[1] = 0;
LowerBound[2] = ThisTask * Range[2];
srand48(ThisTask);
for(i = 0; i < n_for_this_task; i++)
{
for(k = 0; k < 3; k++)
{
drandom = drand48();
P[i].Pos[k] = LowerBound[k] + Range[k] * drandom;
P[i].Vel[k] = 0;
}
P[i].Mass = partmass;
P[i].Type = 1;
P[i].ID = IDstart + i;
NumPart++;
}
}
#endif