-
Notifications
You must be signed in to change notification settings - Fork 72
/
seq2seq_model.py
436 lines (370 loc) · 18.3 KB
/
seq2seq_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Sequence-to-sequence model with an attention mechanism."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import random
import numpy as np
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
import utils.data_utils as data_utils
import seq2seq
from tensorflow.python.ops import variable_scope
class Seq2SeqModel(object):
"""Sequence-to-sequence model with attention and for multiple buckets.
This class implements a multi-layer recurrent neural network as encoder,
and an attention-based decoder. This is the same as the model described in
this paper: http://arxiv.org/abs/1412.7449 - please look there for details,
or into the seq2seq library for complete model implementation.
This class also allows to use GRU cells in addition to LSTM cells, and
sampled softmax to handle large output vocabulary size. A single-layer
version of this model, but with bi-directional encoder, was presented in
http://arxiv.org/abs/1409.0473
and sampled softmax is described in Section 3 of the following paper.
http://arxiv.org/abs/1412.2007
"""
def __init__(self,
source_vocab_size,
target_vocab_size,
buckets,
size,
num_layers,
latent_dim,
max_gradient_norm,
batch_size,
learning_rate,
kl_min=2,
word_dropout_keep_prob=1.0,
anneal=False,
kl_rate_rise_factor=None,
use_lstm=False,
num_samples=512,
optimizer=None,
activation=tf.nn.relu,
forward_only=False,
feed_previous=True,
bidirectional=False,
weight_initializer=None,
bias_initializer=None,
iaf=False,
dtype=tf.float32):
"""Create the model.
Args:
source_vocab_size: size of the source vocabulary.
target_vocab_size: size of the target vocabulary.
buckets: a list of pairs (I, O), where I specifies maximum input length
that will be processed in that bucket, and O specifies maximum output
length. Training instances that have inputs longer than I or outputs
longer than O will be pushed to the next bucket and padded accordingly.
We assume that the list is sorted, e.g., [(2, 4), (8, 16)].
size: number of units in each layer of the model.
num_layers: number of layers in the model.
max_gradient_norm: gradients will be clipped to maximally this norm.
batch_size: the size of the batches used during training;
the model construction is independent of batch_size, so it can be
changed after initialization if this is convenient, e.g., for decoding.
learning_rate: learning rate to start with.
use_lstm: if true, we use LSTM cells instead of GRU cells.
num_samples: number of samples for sampled softmax.
forward_only: if set, we do not construct the backward pass in the model.
dtype: the data type to use to store internal variables.
"""
self.source_vocab_size = source_vocab_size
self.target_vocab_size = target_vocab_size
self.latent_dim = latent_dim
self.buckets = buckets
self.batch_size = batch_size
self.word_dropout_keep_prob = word_dropout_keep_prob
self.kl_min = kl_min
feed_previous = feed_previous or forward_only
self.learning_rate = tf.Variable(
float(learning_rate), trainable=False, dtype=dtype)
self.enc_embedding = tf.get_variable("enc_embedding", [source_vocab_size, size], dtype=dtype, initializer=weight_initializer())
self.dec_embedding = tf.get_variable("dec_embedding", [target_vocab_size, size], dtype=dtype, initializer=weight_initializer())
self.kl_rate = tf.Variable(
0.0, trainable=False, dtype=dtype)
self.new_kl_rate = tf.placeholder(tf.float32, shape=[], name="new_kl_rate")
self.kl_rate_update = tf.assign(self.kl_rate, self.new_kl_rate)
self.replace_input = tf.placeholder(tf.int32, shape=[None], name="replace_input")
replace_input = tf.nn.embedding_lookup(self.dec_embedding, self.replace_input)
self.global_step = tf.Variable(0, trainable=False)
# If we use sampled softmax, we need an output projection.
output_projection = None
softmax_loss_function = None
# Sampled softmax only makes sense if we sample less than vocabulary size.
if num_samples > 0 and num_samples < self.target_vocab_size:
w_t = tf.get_variable("proj_w", [self.target_vocab_size, size], dtype=dtype, initializer=weight_initializer())
w = tf.transpose(w_t)
b = tf.get_variable("proj_b", [self.target_vocab_size], dtype=dtype, initializer=bias_initializer)
output_projection = (w, b)
def sampled_loss(inputs, labels):
labels = tf.reshape(labels, [-1, 1])
# We need to compute the sampled_softmax_loss using 32bit floats to
# avoid numerical instabilities.
local_w_t = tf.cast(w_t, tf.float32)
local_b = tf.cast(b, tf.float32)
local_inputs = tf.cast(inputs, tf.float32)
return tf.cast(
tf.nn.sampled_softmax_loss(local_w_t, local_b, local_inputs, labels,
num_samples, self.target_vocab_size),
dtype)
softmax_loss_function = sampled_loss
# Create the internal multi-layer cell for our RNN.
single_cell = tf.nn.rnn_cell.GRUCell(size)
if use_lstm:
single_cell = tf.nn.rnn_cell.BasicLSTMCell(size)
cell = single_cell
def encoder_f(encoder_inputs):
return seq2seq.embedding_encoder(
encoder_inputs,
cell,
self.enc_embedding,
num_symbols=source_vocab_size,
embedding_size=size,
bidirectional=bidirectional,
weight_initializer=weight_initializer,
dtype=dtype)
def decoder_f(encoder_state, decoder_inputs):
return seq2seq.embedding_rnn_decoder(
decoder_inputs,
encoder_state,
cell,
embedding=self.dec_embedding,
word_dropout_keep_prob=word_dropout_keep_prob,
replace_input=replace_input,
num_symbols=target_vocab_size,
embedding_size=size,
output_projection=output_projection,
feed_previous=feed_previous,
weight_initializer=weight_initializer)
def enc_latent_f(encoder_state):
return seq2seq.encoder_to_latent(
encoder_state,
embedding_size=size,
latent_dim=latent_dim,
num_layers=num_layers,
activation=activation,
use_lstm=use_lstm,
enc_state_bidirectional=bidirectional,
dtype=dtype)
def latent_dec_f(latent_vector):
return seq2seq.latent_to_decoder(latent_vector,
embedding_size=size,
latent_dim=latent_dim,
num_layers=num_layers,
activation=activation,
use_lstm=use_lstm,
dtype=dtype)
def sample_f(mean, logvar):
return seq2seq.sample(
mean,
logvar,
latent_dim,
iaf,
kl_min,
anneal,
self.kl_rate,
dtype)
# The seq2seq function: we use embedding for the input and attention.
def seq2seq_f(encoder_inputs, decoder_inputs, do_decode):
return tf.nn.seq2seq.embedding_attention_seq2seq_f(
encoder_inputs,
decoder_inputs,
cell,
num_encoder_symbols=source_vocab_size,
num_decoder_symbols=target_vocab_size,
embedding_size=size,
output_projection=output_projection,
feed_previous=do_decode,
dtype=dtype)
# Feeds for inputs.
self.encoder_inputs = []
self.decoder_inputs = []
self.target_weights = []
for i in xrange(buckets[-1][0]): # Last bucket is the biggest one.
self.encoder_inputs.append(tf.placeholder(tf.int32, shape=[None],
name="encoder{0}".format(i)))
for i in xrange(buckets[-1][1] + 1):
self.decoder_inputs.append(tf.placeholder(tf.int32, shape=[None],
name="decoder{0}".format(i)))
self.target_weights.append(tf.placeholder(dtype, shape=[None],
name="weight{0}".format(i)))
# Our targets are decoder inputs shifted by one.
targets = [self.decoder_inputs[i + 1]
for i in xrange(len(self.decoder_inputs) - 1)]
self.means, self.logvars = seq2seq.variational_encoder_with_buckets(
self.encoder_inputs, buckets, encoder_f, enc_latent_f,
softmax_loss_function=softmax_loss_function)
self.outputs, self.losses, self.KL_objs, self.KL_costs = seq2seq.variational_decoder_with_buckets(
self.means, self.logvars, self.decoder_inputs, targets,
self.target_weights, buckets, decoder_f, latent_dec_f,
sample_f, softmax_loss_function=softmax_loss_function)
# If we use output projection, we need to project outputs for decoding.
if output_projection is not None:
for b in xrange(len(buckets)):
self.outputs[b] = [
tf.matmul(output, output_projection[0]) + output_projection[1]
for output in self.outputs[b]
]
# Gradients and SGD update operation for training the model.
params = tf.trainable_variables()
if not forward_only:
self.gradient_norms = []
self.updates = []
for b in xrange(len(buckets)):
total_loss = self.losses[b] + self.KL_objs[b]
gradients = tf.gradients(total_loss, params)
clipped_gradients, norm = tf.clip_by_global_norm(gradients,
max_gradient_norm)
self.gradient_norms.append(norm)
self.updates.append(optimizer.apply_gradients(
zip(clipped_gradients, params), global_step=self.global_step))
self.saver = tf.train.Saver(tf.global_variables())
def step(self, session, encoder_inputs, decoder_inputs, target_weights,
bucket_id, forward_only, prob, beam_size=1):
"""Run a step of the model feeding the given inputs.
Args:
session: tensorflow session to use.
encoder_inputs: list of numpy int vectors to feed as encoder inputs.
decoder_inputs: list of numpy int vectors to feed as decoder inputs.
target_weights: list of numpy float vectors to feed as target weights.
bucket_id: which bucket of the model to use.
forward_only: whether to do the backward step or only forward.
Returns:
A triple consisting of gradient norm (or None if we did not do backward),
average perplexity, and the outputs.
Raises:
ValueError: if length of encoder_inputs, decoder_inputs, or
target_weights disagrees with bucket size for the specified bucket_id.
"""
# Check if the sizes match.
encoder_size, decoder_size = self.buckets[bucket_id]
if len(encoder_inputs) != encoder_size:
raise ValueError("Encoder length must be equal to the one in bucket,"
" %d != %d." % (len(encoder_inputs), encoder_size))
if len(decoder_inputs) != decoder_size:
raise ValueError("Decoder length must be equal to the one in bucket,"
" %d != %d." % (len(decoder_inputs), decoder_size))
if len(target_weights) != decoder_size:
raise ValueError("Weights length must be equal to the one in bucket,"
" %d != %d." % (len(target_weights), decoder_size))
# Input feed: encoder inputs, decoder inputs, target_weights, as provided.
input_feed = {}
for l in xrange(encoder_size):
input_feed[self.encoder_inputs[l].name] = encoder_inputs[l]
for l in xrange(decoder_size):
input_feed[self.decoder_inputs[l].name] = decoder_inputs[l]
input_feed[self.target_weights[l].name] = target_weights[l]
if self.word_dropout_keep_prob < 1:
input_feed[self.replace_input.name] = np.full((self.batch_size), data_utils.UNK_ID, dtype=np.int32)
# Since our targets are decoder inputs shifted by one, we need one more.
last_target = self.decoder_inputs[decoder_size].name
input_feed[last_target] = np.zeros([self.batch_size], dtype=np.int32)
if not prob:
input_feed[self.logvars[bucket_id]] = np.full((self.batch_size, self.latent_dim), -800.0, dtype=np.float32)
# Output feed: depends on whether we do a backward step or not.
if not forward_only:
output_feed = [self.updates[bucket_id], # Update Op that does SGD.
self.gradient_norms[bucket_id], # Gradient norm.
self.losses[bucket_id],
self.KL_costs[bucket_id]] # Loss for this batch.
else:
output_feed = [self.losses[bucket_id], self.KL_costs[bucket_id]] # Loss for this batch.
for l in xrange(decoder_size): # Output logits.
output_feed.append(self.outputs[bucket_id][l])
outputs = session.run(output_feed, input_feed)
if not forward_only:
return outputs[1], outputs[2], outputs[3], None # Gradient norm, loss, KL divergence, no outputs.
else:
return None, outputs[0], outputs[1], outputs[2:] # no gradient norm, loss, KL divergence, outputs.
def encode_to_latent(self, session, encoder_inputs, bucket_id):
# Check if the sizes match.
encoder_size, _ = self.buckets[bucket_id]
if len(encoder_inputs) != encoder_size:
raise ValueError("Encoder length must be equal to the one in bucket,"
" %d != %d." % (len(encoder_inputs), encoder_size))
input_feed = {}
for l in xrange(encoder_size):
input_feed[self.encoder_inputs[l].name] = encoder_inputs[l]
output_feed = [self.means[bucket_id], self.logvars[bucket_id]]
means, logvars = session.run(output_feed, input_feed)
return means, logvars
def decode_from_latent(self, session, means, logvars, bucket_id, decoder_inputs, target_weights):
_, decoder_size = self.buckets[bucket_id]
# Input feed: means.
input_feed = {self.means[bucket_id]: means}
input_feed[self.logvars[bucket_id]] = logvars
for l in xrange(decoder_size):
input_feed[self.decoder_inputs[l].name] = decoder_inputs[l]
input_feed[self.target_weights[l].name] = target_weights[l]
if self.word_dropout_keep_prob < 1:
input_feed[self.replace_input.name] = np.full((self.batch_size), data_utils.UNK_ID, dtype=np.int32)
last_target = self.decoder_inputs[decoder_size].name
input_feed[last_target] = np.zeros([self.batch_size], dtype=np.int32)
output_feed = []
for l in xrange(decoder_size): # Output logits.
output_feed.append(self.outputs[bucket_id][l])
outputs = session.run(output_feed, input_feed)
return outputs
def get_batch(self, data, bucket_id):
"""Get a random batch of data from the specified bucket, prepare for step.
To feed data in step(..) it must be a list of batch-major vectors, while
data here contains single length-major cases. So the main logic of this
function is to re-index data cases to be in the proper format for feeding.
Args:
data: a tuple of size len(self.buckets) in which each element contains
lists of pairs of input and output data that we use to create a batch.
bucket_id: integer, which bucket to get the batch for.
Returns:
The triple (encoder_inputs, decoder_inputs, target_weights) for
the constructed batch that has the proper format to call step(...) later.
"""
encoder_size, decoder_size = self.buckets[bucket_id]
encoder_inputs, decoder_inputs = [], []
# Get a random batch of encoder and decoder inputs from data,
# pad them if needed, reverse encoder inputs and add GO to decoder.
for _ in xrange(self.batch_size):
encoder_input, decoder_input = random.choice(data[bucket_id])
# Encoder inputs are padded and then reversed.
encoder_pad = [data_utils.PAD_ID] * (encoder_size - len(encoder_input))
encoder_inputs.append(list(reversed(encoder_input + encoder_pad)))
# Decoder inputs get an extra "GO" symbol, and are padded then.
decoder_pad_size = decoder_size - len(decoder_input) - 1
decoder_inputs.append([data_utils.GO_ID] + decoder_input +
[data_utils.PAD_ID] * decoder_pad_size)
# Now we create batch-major vectors from the data selected above.
batch_encoder_inputs, batch_decoder_inputs, batch_weights = [], [], []
# Batch encoder inputs are just re-indexed encoder_inputs.
for length_idx in xrange(encoder_size):
batch_encoder_inputs.append(
np.array([encoder_inputs[batch_idx][length_idx]
for batch_idx in xrange(self.batch_size)], dtype=np.int32))
# Batch decoder inputs are re-indexed decoder_inputs, we create weights.
for length_idx in xrange(decoder_size):
batch_decoder_inputs.append(
np.array([decoder_inputs[batch_idx][length_idx]
for batch_idx in xrange(self.batch_size)], dtype=np.int32))
# Create target_weights to be 0 for targets that are padding.
batch_weight = np.ones(self.batch_size, dtype=np.float32)
for batch_idx in xrange(self.batch_size):
# We set weight to 0 if the corresponding target is a PAD symbol.
# The corresponding target is decoder_input shifted by 1 forward.
if length_idx < decoder_size - 1:
target = decoder_inputs[batch_idx][length_idx + 1]
if length_idx == decoder_size - 1 or target == data_utils.PAD_ID:
batch_weight[batch_idx] = 0.0
batch_weights.append(batch_weight)
return batch_encoder_inputs, batch_decoder_inputs, batch_weights