-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathcpu.rs
959 lines (811 loc) · 32.3 KB
/
cpu.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
use crate::{
board::HardwareBridge,
mem::MappedMemory,
mmu::{MemAction, Mmu},
};
use super::Registers;
/// Central Processing Unit (CPU)
pub struct Cpu {
/// Registers (available from the outside of the crate)
pub regs: Registers,
/// Mapped memory
pub(crate) mem: MappedMemory,
/// Memory Management Unit (MMU)
mmu: Mmu,
/// Hardware bridge
hwb: HardwareBridge,
/// Current cycle count (goes back to 0 after reaching maximum)
cycles: u128,
/// Is the CPU halted?
halted: bool,
/// (Internal) Did the current cycle change the PC register?
_cycle_changed_pc: bool,
}
impl Cpu {
/// Create a new CPU using an existing mapped memory (must be the same one the motherboard this CPU will be connected to uses).
pub fn new(hwb: HardwareBridge, mem: MappedMemory) -> Self {
let mut cpu = Self {
regs: Registers::new(),
mem,
mmu: Mmu::new(),
hwb,
cycles: 0,
halted: true,
_cycle_changed_pc: false,
};
// Enable supervisor mode by default
cpu.regs.smt = 1;
cpu
}
/// Hanldle a RESET signal from the motherboard
pub fn reset(&mut self) {
self.regs.reset();
self.regs.smt = 1;
self.cycles = 0;
self.halted = false;
self._cycle_changed_pc = true;
}
/// Run the next instruction. Returns:
/// * `Ok(true)` if the instruction run correctly
/// * `Ok(false)` if the CPU is currently halted
/// * `Err()` if an exception occurred *except for interruptions*
#[allow(clippy::should_implement_trait)]
pub fn next(&mut self) {
// Do not run if the CPU is halted
if self.halted {
return;
}
// Cycle goes back to 0 when overflowing
self.cycles = self.cycles.wrapping_add(1);
// Get the instruction to run
let instr = match self.mem_exec(self.regs.pc) {
Err(_) => return,
Ok(bytes) => bytes.to_be_bytes(),
};
// Get its opcode (5 first bits of the first byte)
let opcode = instr[0] >> 3;
// Determine which parameters are registers by reading the 3 last bits of the first byte
let opregs = [
instr[0] & 0b100 != 0,
instr[0] & 0b10 != 0,
instr[0] & 0b1 != 0,
];
// Get the instruction's parameters
let params = [instr[1], instr[2], instr[3]];
// Used to determine if the current cycle changed PC (see below)
self._cycle_changed_pc = false;
// Run the decoded instruction
if self.run_instr(opcode, opregs, params).is_err() {
return;
}
// By default, the program counter (located in the PC register) is incremented of 4 bytes to make the CPU retrieve the next instruction
// from the memory's next word.
// BUT if the current instruction purposedly modified PC, we don't want it to the be modified again.
// So, we only add 4 to PC if it hasn't been changed by the current instruction.
if !self._cycle_changed_pc {
self.regs.pc = self.regs.pc.wrapping_add(4);
}
}
/// Check if the CPU is halted
pub fn halted(&self) -> bool {
self.halted
}
/// Get the number of cycles the CPU run so far
/// Note that this number goes back to 0 after reaching its maximum (overflow).
pub fn cycles(&self) -> u128 {
self.cycles
}
/// (Internal) Run a decoded instruction
/// This method exists for the sole purpose of making the code cleaner in order to make the ".next()" method more understandable
#[allow(clippy::cognitive_complexity)]
fn run_instr(&mut self, opcode: u8, opregs: [bool; 3], params: [u8; 3]) -> Result<(), ()> {
// Decode the opcode's arguments
// 'REG' = parameter is always a register
// 'REG_OR_LIT_1' = parameter is either a register or a 1-byte literal
// 'REG_OR_LIT_2' = parameter is either a register or a 2-bytes literal
macro_rules! args {
// <register>
(REG) => {
params[0]
};
// <register or literal>
(REG_OR_LIT_1) => {
__reg_or_lit!(0, 1)
};
// <register or long literal>
(REG_OR_LIT_2) => {
__reg_or_lit!(0, 2)
};
// <register>, <register>
(REG, REG) => {
(params[0], params[1])
};
// <register>, <register or literal>
(REG, REG_OR_LIT_1) => {
(params[0], __reg_or_lit!(1, 1))
};
// <register>, <register or long literal>
(REG, REG_OR_LIT_2) => {
(params[0], __reg_or_lit!(1, 2))
};
// <register or literal>, <register>
(REG_OR_LIT_1, REG) => {
(__reg_or_lit!(0, 1), params[1])
};
// <register or literal>, <register or literal>
(REG_OR_LIT_1, REG_OR_LIT_1) => {
(__reg_or_lit!(0, 1), __reg_or_lit!(1, 1))
};
// <register or literal>, <register or long literal>
(REG_OR_LIT_1, REG_OR_LIT_2) => {
(__reg_or_lit!(0, 1), __reg_or_lit!(1, 2))
};
// <register>, <register>, <register>
(REG, REG, REG) => {
(params[0], params[1], params[2])
};
// <register>, <register>, <register or literal>
(REG, REG, REG_OR_LIT_1) => {
(params[0], params[1], __reg_or_lit!(2, 1))
};
// <register>, <register or literal>, <register>
(REG, REG_OR_LIT_1, REG) => {
(params[0], __reg_or_lit!(1, 1), params[2])
};
// <register>, <register or literal>, <register or literal>
(REG, REG_OR_LIT_1, REG_OR_LIT_1) => {
(params[0], __reg_or_lit!(1, 1), __reg_or_lit!(2, 1))
};
// <register or literal>, <register>, <register>
(REG_OR_LIT_1, REG, REG) => {
(__reg_or_lit!(0, 1), params[1], params[2])
};
// <register or literal>, <register>, <register or literal>
(REG_OR_LIT_1, REG, REG_OR_LIT_1) => {
(__reg_or_lit!(0, 1), params[1], __reg_or_lit!(2, 1))
};
// <register or ltieral>, <register or ltieral>, <register>
(REG_OR_LIT_1, REG_OR_LIT_1, REG) => {
(__reg_or_lit!(0, 1), __reg_or_lit!(1, 1), params[2])
};
// <register or literal>, <register or literal>, <register or literal>
(REG_OR_LIT_1, REG_OR_LIT_1, REG_OR_LIT_1) => {
(
__reg_or_lit!(0, 1),
__reg_or_lit!(1, 1),
__reg_or_lit!(2, 1),
)
};
}
// Decode a register-or-literal parameter
macro_rules! __reg_or_lit {
// 1-byte long parameters
($param: expr, 1) => {
__reg_or_lit!(_with_val $param, params[$param].into())
};
// 2-bytes long parameters
($param: expr, 2) => {
__reg_or_lit!(_with_val $param, u16::from_be_bytes([ params[$param], params[$param + 1] ]).into())
};
// <internal>
// '$param' is the parameter first byte's index (starting from 0)
// '$literal' is the decoded parameter's value in case it's not a register (combined bytes of params[$param..=$param+<param length>])
(_with_val $param: expr, $literal: expr) => {
// If the parameter is a register...
if opregs[$param] {
// Try to read it
self.read_reg(params[$param])?
} else {
// Otherwise it's a literal
$literal
}
};
}
// Run the instruction based on its opcode
match opcode {
// <Unknown instruction>
0x00 => {
self.exception(0x01, Some(opcode.into()));
Err(())
},
// CPY
0x01 => {
let (reg_dest, value) = args!(REG, REG_OR_LIT_2);
self.write_reg(reg_dest, value)
},
// EX
0x02 => {
let (reg_a, reg_b) = args!(REG, REG);
let pivot_a = self.read_reg(reg_a)?;
self.read_reg(reg_b).and_then(|reg_b_value| {
self.write_reg(reg_a, reg_b_value)?;
self.write_reg(reg_b, pivot_a)
})
},
// ADD, SUB, MUL, AND, BOR, XOR, SHL, SHR
0x03..=0x05 | 0x08..=0x0C => {
let (reg, mut value) = args!(REG, REG_OR_LIT_2);
if (opcode == 0x0B || opcode == 0x0C) && !opregs[1] {
value >>= 8
}
let reg_value = self.read_reg(reg)?;
let compute = self.compute(reg_value, value, match opcode {
0x03 => Op::Add,
0x04 => Op::Sub,
0x05 => Op::Mul,
0x08 => Op::And,
0x09 => Op::Bor,
0x0A => Op::Xor,
0x0B => Op::Shl,
0x0C => Op::Shr,
_ => unreachable!()
})?;
self.write_reg(reg, compute)
},
// DIV
0x06 => {
let (reg, value, mode) = args!(REG, REG_OR_LIT_1, REG_OR_LIT_1);
let reg_value = self.read_reg(reg)?;
let compute = self.compute(reg_value, value, Op::Div { mode: (mode & 0xFF) as u8 })?;
self.write_reg(reg, compute)
},
// MOD
0x07 => {
let (reg, value, mode) = args!(REG, REG_OR_LIT_1, REG_OR_LIT_1);
let reg_value = self.read_reg(reg)?;
let compute = self.compute(reg_value, value, Op::Mod { mode: (mode & 0xFF) as u8 })?;
self.write_reg(reg, compute)
},
// CMP
0x0D => {
let (reg, value) = args!(REG, REG_OR_LIT_2);
let reg_value = self.read_reg(reg)?;
self.compute(reg_value, value, Op::Sub)?;
Ok(())
},
// JPR
0x0E => {
let bytes = args!(REG_OR_LIT_2) as i16;
self.regs.pc = self.regs.pc.wrapping_add(bytes as u32);
self._cycle_changed_pc = true;
Ok(())
},
// LSM
0x0F => {
if self.sv_mode() {
self.regs.pc = args!(REG_OR_LIT_2);
self.regs.smt = 0;
Ok(())
} else {
self.exception(0x09, Some(opcode.into()));
Err(())
}
},
// ITR
0x10 => {
let itr_code = args!(REG_OR_LIT_1);
self.exception(0xF0, Some(itr_code as u16));
Ok(())
},
// IF, IFN
0x11 | 0x12 => {
let flag = args!(REG_OR_LIT_1);
if flag > 7 {
self.exception(0x0C, Some(flag as u8 as u16));
return Err(());
}
let is_flag_set = (self.regs.af & (1 << (7 - flag))) != 0;
if is_flag_set != (opcode == 0x11) {
self.regs.pc = self.regs.pc.wrapping_add(4);
}
Ok(())
},
// IF2
0x13 => {
let (flag_a, flag_b, cond) = args!(REG_OR_LIT_1, REG_OR_LIT_1, REG_OR_LIT_1);
let (flag_a, flag_b) = (self.regs.af & (1 << (7 - flag_a)) != 0, self.regs.af & (1 << (7 - flag_b)) != 0);
let result = match cond {
0x01 => flag_a || flag_b,
0x02 => flag_a && flag_b,
0x03 => flag_a ^ flag_b,
0x04 => !flag_a && !flag_b,
0x05 => !(flag_a && flag_b),
0x06 => flag_a && !flag_b,
0x07 => flag_b && !flag_a,
_ => {
self.exception(0x0D, Some(cond as u8 as u16));
return Err(())
}
};
if !result {
self.regs.pc = self.regs.pc.wrapping_add(4);
}
Ok(())
},
// LSA
0x14 => {
let (reg_dest, v_addr, add) = args!(REG, REG_OR_LIT_1, REG_OR_LIT_1);
let word = self.mem_read(v_addr.wrapping_add(add))?;
self.write_reg(reg_dest, word)
},
// LEA
0x15 => {
let (v_addr, add, mul) = args!(REG_OR_LIT_1, REG_OR_LIT_1, REG_OR_LIT_1);
self.regs.avr = self.mem_read(v_addr.wrapping_add(add.wrapping_mul(mul)))?;
Ok(())
},
// WSA
0x16 => {
let (v_addr, add, val) = args!(REG_OR_LIT_1, REG_OR_LIT_1, REG_OR_LIT_1);
self.mem_write(v_addr.wrapping_add(add), val)
},
// WEA
0x17 => {
let (v_addr, add, mul) = args!(REG_OR_LIT_1, REG_OR_LIT_1, REG_OR_LIT_1);
self.mem_write(v_addr.wrapping_add(add.wrapping_mul(mul)), self.regs.avr)
},
// SRM
0x18 => {
let (v_addr, add, reg_swap) = args!(REG_OR_LIT_1, REG_OR_LIT_1, REG);
let old_word = self.mem_read(v_addr + add)?;
let to_write = self.read_reg(reg_swap)?;
self.mem_write(v_addr + add, to_write)?;
self.write_reg(reg_swap, old_word)
},
// PUSH
0x19 => {
let word = args!(REG_OR_LIT_2);
let stack_v_addr = if self.sv_mode() { self.regs.ssp } else { self.regs.usp }.wrapping_sub(4);
self.mem_write(stack_v_addr, word)?;
if self.sv_mode() {
self.regs.ssp = stack_v_addr;
} else {
self.regs.usp = stack_v_addr;
}
Ok(())
},
// POP
0x1A => {
let reg_dest = args!(REG);
let word = if self.sv_mode() {
let word = self.mem_read(self.regs.ssp)?;
self.regs.ssp = self.regs.ssp.wrapping_add(4);
word
} else {
let word = self.mem_read(self.regs.usp)?;
self.regs.usp = self.regs.usp.wrapping_add(4);
word
};
self.write_reg(reg_dest, word)
},
// CALL
0x1B => {
let jmp_v_addr = args!(REG_OR_LIT_2);
let stack_v_addr = if self.sv_mode() { self.regs.ssp } else { self.regs.usp }.wrapping_sub(4);
self.mem_write(stack_v_addr, self.regs.pc + 4)?;
if self.sv_mode() {
self.regs.ssp = stack_v_addr;
} else {
self.regs.usp = stack_v_addr;
}
self.regs.pc = jmp_v_addr;
self._cycle_changed_pc = true;
Ok(())
},
// HWD
0x1C => {
let (reg_dest, aux_id, hw_info) = args!(REG, REG_OR_LIT_1, REG_OR_LIT_1);
if aux_id == 0 && hw_info == 0 {
return self.write_reg(reg_dest, self.hwb.count() as u32);
}
let aux_id = usize::try_from(aux_id)
.map_err(|_| self.exception(0x10, Some(aux_id as u16)))?;
let hw_data = self.get_hw_info(hw_info, aux_id)?;
self.write_reg(reg_dest, hw_data)
},
// CYCLES
0x1D => {
let reg_dest = args!(REG);
self.write_reg(reg_dest, self.cycles as u32)
},
// HALT
0x1E => {
self.halted = true;
Ok(())
},
// RESET
0x1F => {
let mode = args!(REG_OR_LIT_1);
// Get the two modes (one per byte)
let (cpu_mode, aux_mode) = ((mode & 0xF0) as u8, (mode & 0x0F) as u8);
// Determine which components should be reset
match aux_mode {
// Reset all components
0x0 => {
for id in 0..self.hwb.count() {
self.hwb.reset(id).unwrap();
}
},
// Reset a specific component (ID in `avr`)
0x1 => {
let id = usize::try_from(self.regs.avr)
.map_err(|_| self.exception(0x10, Some(self.regs.avr as u16)))?;
self.hwb.reset(id)
.ok_or_else(|| self.exception(0x10, Some(self.regs.avr as u16)))?;
},
// Reset a component based on a condition (operand ID in `avr`)
0x2..=0x4 => {
let ignore_id = usize::try_from(self.regs.avr).ok();
// Determine how to test if a component should be reset
let test = move |id| match ignore_id {
None => true,
Some(ignore_id) => match aux_mode {
0x2 => id != ignore_id,
0x3 => id < ignore_id,
0x4 => id > ignore_id,
_ => unreachable!()
}
};
for id in 0..self.hwb.count() {
if test(id) {
self.hwb.reset(id).unwrap();
}
}
},
_ => {}
};
// Reset the processor
if cpu_mode == 0 {
self.reset();
}
Ok(())
},
_ => unreachable!("Internal error: processor encountered an instruction with an opcode greater than 0x1F (> 5 bits)")
}
}
/// Try to read a register's value.
/// Raises an exception if the specified register is only readable in supervisor mode and userland mode is active.
fn read_reg(&mut self, code: u8) -> Result<u32, ()> {
// Prevent userland mode from accessing supervisor-reserved registers
if code >= 0x18 && !self.sv_mode() {
self.exception(0x03, Some(code.into()));
return Err(());
}
match code {
// a* registers
0x00..=0x07 => Ok(self.regs.a[usize::from(code)]),
// c* registers
0x08..=0x09 => Ok(self.regs.c[usize::from(code) - 0x08]),
// ac* registers
0x0A..=0x0C => Ok(self.regs.ac[usize::from(code) - 0x0A]),
// rr* registers
0x0D..=0x14 => Ok(self.regs.rr[usize::from(code) - 0x0D]),
// individual registers
0x15 => Ok(self.regs.avr),
0x16 => Ok(self.regs.pc),
0x17 => Ok(self.regs.af),
0x18 => Ok(self.regs.ssp),
0x19 => Ok(self.regs.usp),
0x1A => Ok(self.regs.et),
0x1B => Ok(self.regs.era),
0x1C => Ok(self.regs.ev),
0x1D => Ok(self.regs.mtt),
0x1E => Ok(self.regs.pda),
0x1F => Ok(self.regs.smt),
// unknown register
_ => {
self.exception(0x02, Some(code.into()));
Err(())
}
}
}
/// Try to write a register's value.
/// Raises an exception if the specified register is only writable in supervisor mode and userland mode is active.
/// Raises an exception if the specified register is not writable.
fn write_reg(&mut self, code: u8, word: u32) -> Result<(), ()> {
let ucode = usize::from(code);
// Prevent userland mode from accessing supervisor-reserved registers
if code >= 0x17 && !self.sv_mode() {
self.exception(0x04, Some(code.into()));
return Err(());
}
// Prevent writing in read-only registers
if code == 0x17 || code == 0x1A || code == 0x1B {
self.exception(0x04, Some(code.into()));
return Err(());
}
// If we change PC, indicate it has been changed so the CPU won't jump 4 bytes ahead
if code == 0x16 {
self._cycle_changed_pc = true;
}
match code {
// a* registers
0x00..=0x07 => self.regs.a[ucode] = word,
// c* registers
0x08..=0x09 => self.regs.c[ucode - 0x08] = word,
// ac* registers
0x0A..=0x0C => self.regs.ac[ucode - 0x0A] = word,
// rr* registers
0x0D..=0x14 => self.regs.rr[ucode - 0x0D] = word,
// individual registers
0x15 => self.regs.avr = word,
0x16 => self.regs.pc = word,
0x17 => self.regs.af = word,
0x18 => self.regs.ssp = word,
0x19 => self.regs.usp = word,
0x1A => self.regs.et = word,
0x1B => self.regs.era = word,
0x1C => self.regs.ev = word,
0x1D => self.regs.mtt = word,
0x1E => self.regs.pda = word,
0x1F => self.regs.smt = word,
// unknown register
_ => {
self.exception(0x02, Some(code.into()));
return Err(());
}
}
Ok(())
}
/// Perform a numeric computation and set the arithmetic flags.
/// Raises an exception if a forbidden operation happens (e.g. division by zero when forbidden by the provided division mode).
fn compute(&mut self, op1: u32, op2: u32, op: Op) -> Result<u32, ()> {
let iop1 = op1 as i32;
let iop2 = op2 as i32;
let (result, has_carry, has_overflow) = match op {
Op::Add => {
let (result, has_carry) = op1.overflowing_add(op2);
(result, has_carry, iop1.overflowing_add(iop2).1)
}
Op::Sub => {
let (result, has_carry) = op1.overflowing_sub(op2);
(result, has_carry, iop1.overflowing_sub(iop2).1)
}
Op::Mul => {
let (result, has_carry) = iop1.overflowing_mul(iop2);
(result as u32, has_carry, has_carry)
}
// This one is a bit tricky
Op::Div { mode } | Op::Mod { mode } => {
// Must we perform a signed division / modulus?
let signed = mode & 0b0001_0000 != 0;
match (op == Op::Div { mode }, signed, iop1, iop2) {
// Division / modulus by zero
(_, _, _, 0) => match (mode & 0b0000_1100) >> 2 {
// Forbid
0b00 => {
self.exception(0x0A, None);
return Err(());
}
// Result in the minimum signed value
0b01 => (0x8000_0000, true, true),
// Result in zero
0b10 => (0x0000_0000, true, true),
// Result in the maximum signed value
0b11 => (0x7FFF_FFFF, true, true),
_ => unreachable!(),
},
// Minimum signed value divided / moduled by -1 (overflowing multiplication)
(_, true, std::i32::MIN, -1) => match (mode & 0b0000_0011) >> 2 {
// Forbid
0b00 => {
self.exception(0x0B, None);
return Err(());
}
// Result in the minimum signed value
0b01 => (0x8000_0000, true, true),
// Result in zero
0b10 => (0x0000_0000, true, true),
// Result in the maximum signed value
0b11 => (0x7FFF_FFFF, true, true),
_ => unreachable!(),
},
// Safe unsigned division
(true, true, _, _) => ((iop1 / iop2) as u32, false, false),
// Safe unsigned modulus
(false, true, _, _) => ((iop1 % iop2) as u32, false, false),
// Safe signed division
(true, false, _, _) => (op1 / op2, false, false),
// Safe signed modulus
(false, false, _, _) => (op1 % op2, false, false),
}
}
Op::And => (op1 & op2, false, false),
Op::Bor => (op1 | op2, false, false),
Op::Xor => (op1 ^ op2, false, false),
Op::Shl => {
let (result, has_carry) = op1.overflowing_shl(op2);
(result, has_carry, has_carry)
}
Op::Shr => {
let (result, has_carry) = op1.overflowing_shr(op2);
(result, has_carry, has_carry)
}
};
// => Compute and assign arithmetic flags to the `af` register
self.regs.af = 0;
let flags: [bool; 7] = [
// Zero Flag
result == 0,
// Carry Flag
has_carry,
// Overflow Flag
has_overflow,
// Sign Flag
(result >> 31) & 0b1 == 1,
// Even Flag
result & 0b1 == 0,
// Zero-Upper Flag
result <= 0xFFFF,
// Zero-Lower Flag
(result >> 16).trailing_zeros() == 0,
];
for (bit, flag) in flags.iter().enumerate() {
if *flag {
self.regs.af += 1 << (7 - bit);
}
}
Ok(result)
}
/// Check if the CPU is currently in supervisor mode
fn sv_mode(&self) -> bool {
self.regs.smt != 0
}
/// Raise an exception with the provided `code` and `associated` data.
/// Returns the related exception object.
fn exception(&mut self, code: u8, associated: Option<u16>) {
// Assign the Exception Type `et` register.
self.regs.et = (if self.sv_mode() { 1 << 24 } else { 0 })
+ (u32::from(code) << 16)
+ u32::from(associated.unwrap_or(0));
// Jump to the Exception Vector address
self.regs.pc = self.regs.ev;
// Enable supervisor mode to deal with the exception
self.regs.smt = 1;
// Do not forget to indicate we changed PC
self._cycle_changed_pc = true;
}
/// Ensure an address is aligned, or raise an exception otherwise.
fn ensure_aligned(&mut self, v_addr: u32) -> Result<u32, ()> {
if v_addr % 4 != 0 {
self.exception(0x05, Some((v_addr % 4) as u16));
Err(())
} else {
Ok(v_addr)
}
}
/// Perform an action on the memory.
/// The provided address will be first translated by the MMU into a physical address, then the provided handler will be called with:
///
/// * A mutable reference to the mapped memory
/// * The translated physical address
/// * A mutable reference to the exception variable
///
/// The handler is expected to return a value (of any type), which will be turned into an Err() if an exception occurred.
fn mem_do<T>(
&mut self,
action: MemAction,
v_addr: u32,
mut handler: impl FnMut(&mut MappedMemory, u32, &mut u16) -> T,
) -> Result<T, ()> {
let v_addr = self.ensure_aligned(v_addr)?;
match self
.mmu
.translate(&mut self.mem, &self.regs, v_addr, action)
{
Ok(p_addr) => {
let mut ex = 0;
let ret = handler(&mut self.mem, p_addr, &mut ex);
if ex != 0 {
self.exception(0xA0, Some(ex));
Err(())
} else {
Ok(ret)
}
}
Err(None) => {
self.exception(0x06, Some(v_addr as u16));
Err(())
}
Err(Some(ex)) => {
self.exception(0xA0, Some(ex));
Err(())
}
}
}
/// Read an address in the mapped memory.
/// Raises an exception if address is unaligned or if the MMU doesn't accept reading this address in the current mode.
fn mem_read(&mut self, v_addr: u32) -> Result<u32, ()> {
self.mem_do(MemAction::Read, v_addr, |mem, p_addr, ex| {
mem.read(p_addr, ex)
})
}
/// Write an address in the mapped memory.
/// Raises an exception if address is unaligned or if the MMU doesn't accept writing this address in the current mode.
fn mem_write(&mut self, v_addr: u32, word: u32) -> Result<(), ()> {
self.mem_do(MemAction::Write, v_addr, |mem, p_addr, ex| {
mem.write(p_addr, word, ex)
})
}
/// Execute (read) an address in the mapped memory.
/// Raises an exception if address is unaligned or if the MMU doesn't accept executing this address in the current mode.
fn mem_exec(&mut self, v_addr: u32) -> Result<u32, ()> {
self.mem_do(MemAction::Exec, v_addr, |mem, p_addr, ex| {
mem.read(p_addr, ex)
})
}
/// Get informations about an auxiliary comopnent, after retrieving its name and raw metadata
fn get_hw_info(&mut self, hw_info: u32, aux_id: usize) -> Result<u32, ()> {
// Get the auxiliary component's name and metadata (if it exists) as well as its optional mapping
let cache = self
.hwb
.cache_of(aux_id)
.cloned()
.ok_or_else(|| self.exception(0x10, Some(aux_id as u16)))?;
let mapping_opt = self.mem.get_mapping(aux_id).cloned();
let aux_name = cache.name.bytes();
// Return the value to write depending on the hardware information code
let data = match hw_info {
// UID's 32 strongest bits
0x01 => cache.metadata[0],
// UID's 32 weakest bits
0x02 => cache.metadata[1],
// Name's length, in bytes
0x10 => aux_name.count() as u32,
// Name's nth byte
0x11..=0x18 => {
let mut name_bytes = aux_name.skip(((hw_info - 0x11) * 4) as usize);
u32::from_be_bytes([
name_bytes.next().unwrap_or(0),
name_bytes.next().unwrap_or(0),
name_bytes.next().unwrap_or(0),
name_bytes.next().unwrap_or(0),
])
}
// Component's size
0x20 => cache.metadata[2],
// Category
0x21 => cache.metadata[3],
// Type
0x22 => cache.metadata[4],
// Model
0x23 => cache.metadata[5],
// Additional data's 32 strongest bits
0x24 => cache.metadata[6],
// Additional data's 32 weakest bits
0x25 => cache.metadata[7],
// Check if the component is mapped in memory
0xA0 => u32::from(mapping_opt.is_some()),
// Mapping's start address
0xA1 => {
mapping_opt
.ok_or_else(|| self.exception(0x12, Some(aux_id as u16)))?
.addr
}
// Mapping's end address
0xA2 => mapping_opt
.ok_or_else(|| self.exception(0x12, Some(aux_id as u16)))?
.end_addr(),
// Invalid information code
_ => {
self.exception(0x11, Some(hw_info as u16));
return Err(());
}
};
Ok(data)
}
}
/// (Internal) Numeric operation
#[derive(PartialEq, Debug)]
enum Op {
Add,
Sub,
Mul,
Div { mode: u8 },
Mod { mode: u8 },
And,
Bor,
Xor,
Shl,
Shr,
}